

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Cell Communication & Cell Signaling

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Learn cell-cell and cell-matrix adhesion, apoptosis, cell cycle regulation
- b) Introduce to various signalling pathways in living system, types of receptors
- c) Know pathways of intracellular transduction
- **d)** Gain the knowledge of host parasite interactions.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)			sing)	
Lecture Tutorial		Dractical	Proctical Credits		eory	J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Cell junctions, Cell-adhesion & Extracellular matrix	15
	 Cell junctions: Anchoring junction, Occluding junction, Channel forming junctions, Signal relaying junctions, Plasmodesmata Cell adhesion molecules: cadherins, Integrins, selectins, mucins, desmosomes, hemidesmosome Basal lamina and extra cellular matrix. 	
	The Cytoskeleton • Organization and self-assembly of cytoskeletons, Microtubules and actin	
	filaments	

2	Mechanisms of Cell communication:	15
	 General principles of cell communication, Introduction to signalling Receptors (GPCRs, Ion Channel Coupled receptors, Enzyme coupled receptors) and ligands, 	
	• Signalling through G-protein coupled receptors (GPCRs) - Adenylyl Cyclase, Phospholipase C and CAM kinase, heterotrimeric G-proteins,	
	Secondary messenger: NO , Calcium, cAMP Secondary messenger: NO , Calcium, cAMP	
3	• Src kinases, Pathways of intracellular communication:	15
3	 Receptor Tyrosine kinases, Ras/MAPK pathways, PI3-kinase Lipid Signaling Cytokine signaling/JAK-STAT/mTOR, TGF Beta signaling, 	13
	 Wnt and Hedgehog Signaling, Notch/Delta signaling, ,NFkappa B signaling, Signalling in bacteria and plants 	
4	Host Parasite interaction:	15
	 Recognition and entry process of different pathogens like bacteria, viruses into cells. 	
	 Alteration of host cell behavior by pathogens. 	
	Cancer & Cell cycle • Cell Cycle – Phases of Cell Cycle, functional importance of each phase.	
	 Cell Cycle – Phases of Cell Cycle, functional importance of each phase, Molecular events during cell cycle, Checkpoints. 	
	 General account on programmed cell death (Apoptosis) - intrinsic and extrinsic pathways 	
	 Cancer: Genetic rearrangement in progenitor cells, oncogenes, tumor suppressor genes 	

1	Molecular Biology of THE CELL by Albert et al. 7th Edition, 2022, Garland Science, W.W.
	Nortan& Co. ISBN-13:978-0393884821
2	Cell and Molecular Biology: Concepts and Experiments by Gerald Karp (2020) 9th Edition,
	Wiley International Edition, John Wiley & Sons, Inc. ISBN-13: 978-1-119-59824-4.
3	The Cell - A Molecular Approach by Geoffrey M. Cooper and Kenneth Adams. 9th Edition,
	2022, ASM Press, Sinauer Associates, Inc.ISBN:978-0197583722
4	Molecular cell Biology by Harvey Lodish, 5th Edition, (2013) W. H. Freeman and Company,
	New York.ISBN:0-7167-4366-3.
5	Cell Biology by C.B. Powar (2019). Himalaya Publishing House, Mumbai. ISBN-978-93-
	5024-669-6.
6	Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P. S. Verma and V.K.
	Agarwal (Reprinted -2007) Pub. S. Chand & Company Ltd. Ram Nagar, New Delhi. ISBN-
	13:978-8121924429.

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R: Remembering; U: Understanding; A: Applying;	
R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating			
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	Students will learn about the different types of cell junctions, adhesion	25
	molecules, cytoskeleton and the structure and function of ECM.	
CO-2	Students will learn about the different types of cell surface receptors	25
	and their role in signal transduction.	
CO-3	Students will learn about the various pathways of intracellular	25
	communication.	
CO-4	Students will get thorough knowledge of cell cycle and its regulation,	25
	apoptotic mechanism and molecular aspect of cancer.	

Curriculum Revision:		
Version:	1.0	
Drafted on (Month-Year):	January 2023	
Last Reviewed on (Month-Year):	February 2023	
Next Review on (Month-Year):	April 2025	

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Biodegradation & Bioremediation

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand determination of biodegradability of xenobiotic and toxic compounds.
- **b)** Learn microbial transformation of pesticides and chlorinated aliphatic compounds.
- **c)** Know process, advantages and limitations of In-situ and Ex-situ bioremediation.
- **d)** Recognize role of plasmids, metagenomics, and gene manipulation to improve bioremediation technologies.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing			sing)	
Logtuno	Lecture Tutorial		Credits	The	eory	J/V	//P*	Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Biodegradation-I: Introduction, Determination of biodegradability, Principles of	15
	bacterial degradation, environmental factors affecting biodegradation, enzymes,	
	toxicity. Aerobic degradation of hydrocarbons, growth associated aliphatic	
	compound degradation, Degradation of Aromatic compounds. Anaerobic bacterial	
	degradation-biopolymer, fats, lipids, hydrocarbon, N-alkyl, S-alkyl, ketones	
	compound degradation.	

2	Biodegradation-II: Microbial transformation of pesticides, Fundamental reactions	15
	of pesticide metabolism-β-oxidation, oxidative dehalogenation, dealkylation,	
	decarboxylation, epoxidation. Aromatic Non-heterocyclic Ring Cleavage-	
	Hydrolysis, Halogen reaction, Nitro-reduction. Anaerobic degradation of 2,4 D,	
	2,4,5-T and PCB. Degradation of selected volatile organic compounds in ground	
	water-Chlorinated alkanes-PCE, PCA, TCA, TCE, DCA and CT (biotic, abiotic, aerobic,	
	and anaerobic transformations).	
3	Overview of bioremediation strategies, Ex Situ versus In Situ Bioremediation.	15
	Factors affecting bioremediation. In-situ bioremediation- Biosparging, Bioventing,	
	Bioaugmentation (Benefits, Limitation, Process, and factors to consider). Ex-situ	
	Bioremediation- Land farming, composting, Biopiles. Bioreactors.	
	Phytoremediation: Types of phytoremediation technologies (phytoextraction,	
	phytostabilization, phytovolatilization, rhizodegradation, rhizofiltration).	
4	Use of bacteria fungi and algae in biosorption, Biomineralization Bioleaching:	15
	Microorganisms involved in Bioleaching of ores, mechanisms of bioleaching,	
	Bioleaching & Metal recovery. Molecular techniques in bioremediation, Role of	
	plasmids in bioremediation, Genetics, and gene manipulation: Metagenomics in	
	Bioremediation, Bio-surfactants in bioremediation, Microbial surfactants.	
	Bioremediation of air pollutants-Microbial degradation of contaminants in gas	
	phase, Biofiltration, Biofilter media, Microbial ecology of biofilters.	

1	Environmental Biotechnology by Alan Scragg (2005). 2 nd Edition. Oxford University Press.
	ISBN: 9780199268672.
2	Textbook of Environmental Biotechnology by Pradipta Kumar Mohapatra (2007). I. K.
	International Publishing House. ISBN: 81-88237-54-X.
3	Introduction to Biodeterioration by Dennis Allsopp, Kenneth J. Seal, Christine C. Gaylarde.
	(2004). 2 nd Edition. Cambridge University Press. ISBN: 0521528879.
4	Manual of Soil analysis- Monitoring and Assessing Soil Bioremediation by R. Margesin and F.
	Schinner (2005). 4th Edition. Springer Publishers. ISBN: 3540253467.
5	Bioremediation by James J. Valdes (2000). 2000th Edition. Springer Publishers. ISBN
	0792364597.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage					
CO-1	Students will be able to determine the biodegradability of xenobiotic,	25					
	recalcitrant and toxic compounds.						
CO-2	Students will be familiar with the basics of microbial transformation of	25					
	pesticides and chlorinated aliphatic compounds.						
CO-3	Students will be able to understand the process, advantages and	25					
	limitations of In-situ and Ex-situ bioremediation.						
CO-4	Students will be able to know the Role of plasmids, metagenomics and						
	gene manipulation to improve bioremediation technologies.						

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Food Biotechnology

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Opportunities and applications of food biotechnology.
- **b)** Microbial food borne diseases, infection and intoxications.
- c) Production of genetically modified foods, guidelines for their production and release.
- **d)** Application of biotechnology in improving nutritional value of food.

Teaching & Examination Scheme:

- caoming a znammation bonome.								
Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	The	Theory		J/V/P*	
Lecture	Tutoriai			Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} I: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Scope of food biotechnology	15					
	Food as a substrate for microorganisms						
	Role of Microbes in food Biotechnology – Bacteria, yeasts and moulds						
	Food Spoilage						
	a) General principles underlying food spoilage and contamination.						
	b) Spoilage of canned food, vegetables, fruits, meat and meat products, milk and						
	milk products fish and seafood						

2	Microbial Foodborne Diseases	15				
	Foodborne Infections & Foodborne Intoxications					
	Food borne pathogens					
	a) Bacterial food borne infections and intoxications- Brucella, Campylobacter,					
	Clostridium, Escherichia (ETEC/EHEC/EPEC/EAEC), Salmonella, Shigella, Listeria					
	and <i>Vibrio</i>					
	b) Non- bacterial food borne infections and intoxications- Protozoa, fungi & viruses					
3	a) Food preservation	15				
	Principles of food preservation – Physical and chemical preservation methods,					
	Bio preservatives					
	b) Starter cultures for dairy & fermented foods					
	Oriental fermented foods: Shoyu and Tempeh					
	Fermented milk products: Yogurt and Kefir					
	Fermented vegetables – Sauerkraut					
4	Genetically modified foods	15				
	Food research organizations/institutes in India					
	Food sanitation – Microbiology of food plant sanitation, water and milk testing					
	Food laws and quality control – HACCP, Codex Alimentarius, PFA, FPO, MFPO, BIS,					
	AGMARK.					

1	Food Microbiology by William C. Francis and Donnis C. Weethoff (2017). Ith Edition						
I	Food Microbiology by William C. Frazier and Dennis C. Westhoff (2017). 5th Edition,						
	Published by McGraw Hill Education (India) Private Limited, Print Edition: ISBN-13: 978-1-						
	25-906251-3, ISBN-13: 978-93-392-0322-1.						
2	Food microbiology by Martin R. Adam and Maurice O. Moss (2015). 4th Edition, Published by						
	The Royal Society of Chemistry. ISBN 978-0-85404-284-5.						
3	Dairy Microbiology Handbook Edited by Richard K. Robinson (2002). 3rd Edition, Published						
	by John Wiley & Sons, Inc., New York. ISBN 0-471-38506-4.						
4	Fundamental Food Microbiology by Bibek Ray and Arun Bhuniya (2014). 5th Edition,						
	Published by CRC Press. ISBN-10: 0-8493-7529-0.						

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	Distribution of Theory Marks in %					R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		C	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage				
CO-1	Students will be able to understand opportunities and applications of	25				
	food biotechnology.					
CO-2	Students will be able to understand about food borne diseases, bacterial	25				
	and non-bacterial food infections and intoxications.					
CO-3	Students will know about the production of genetically modified foods,					
	guidelines for their production and release.					
CO-4	Students will be able to understand the Application of biotechnology in	25				
	improving nutritional value of food.					

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Lab - I (Cell Communication & Cell Signaling and Biodegradation &

Bioremediation)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passir			sing)		
Locturo	Tutorial	Practical	Credits	The	eory	J/V	//P*	Total	
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total	
		6	4			40/16	60/24	100/40	

^{*} **J**: Jury; **V**: Viva; **P**: Practical

List of Practicals / Tutorials: Cell Communication & Cell Signaling

1	Mitosis preparation
2	Meiosis preparation
3	Histological localization of DNA and RNA
4	Histone protein localization
5	Nucleolus localization
6	Enzyme localization
7	Protein localization
8	Lipid localization
9	PAS reaction for GAG molecules

List of Practicals / Tutorials: Biodegradation & Bioremediation

1	Enrichment and Isolation of hydrocarbon degrading microorganisms.
2	Study of biosurfactant production through hydrocarbon degradation.
3	Detection of chromium from water/wastewater sample.
4	Detection of iron from water/wastewater sample.
5	Isolation of metal detoxifying microorganisms.
6	Study of biodegradation of aromatic compounds using TLC.
7	Decolourization of dye.

8 In situ bioremediation studies of biostimulation for hydrocarbon contaminated soil.

Reference Books:

1	Cell Biology: Practical manual by Renu Gupta, Seema makhija & Ravi Toteja (2018) Prestige
	Publishers ISBN 978-81-936512-1-6.

- 2 Standard Methods for the Examination of Water and Wastewater by Baird, Rodger, and Laura. Bridgewater (2017). Washington, D.C.: American Public Health Association.
- Guidelines for water quality monitoring CPCB (2008). Parivesh Bhawan, Central Pollution Control Board, New Delhi. MINARS/27/2007-08. http://www.cpcb.nic.in/upload/NewItems/New
- 4 Isolation, and characterization of biosurfactant-producing *Serratia marcescens* ZCF25 from oil sludge and application to bioremediation by Huang, Y., Zhou, H., Zheng, G., Li, Y., Xie, Q., You, S., Zhang, C. (2020). Environ. Sci. Pollut. Res., 27, 27762–27772.
- Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills; A. Mittal and P. Singh (2009). Indian Journal of Experimental Biology, vol. 47, pp. 760–765.
- 6 Isolation of biosurfactant-producing *Pseudomonas aeruginosa* RS29 from oil contaminated soil and evaluation of different nitrogen sources in biosurfactant production by Saikia, R.R., Deka, S., Deka, M., Banat, I.M. (2012). Ann. Microbiol. 62, 753–763.

Sup	Supplementary learning Material:			
1	https://nptel.ac.in/			
2	https://swayam.gov.in/			
3	https://diksha.gov.in/			
4	https://epathshala.nic.in/			

Pedagogy:

Hands on training

Discussion with students

Demonstration

Model

Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

	Distribution of Theory Marks in %			larks i	n %	R: Remembering; U: Understanding; A: Applying;	
	R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
Ī	25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	January 2023
Last Reviewed on (Month-Year):	February 2023
Next Review on (Month-Year):	April 2025

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Lab - II (Food Biotechnology and Elective Course)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Course Examination Marks (Maximum /			mum / Pas	sing)
Logtumo	Tutorial	Practical	Credits	Theory J/V		//P*	Total	
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Food Biotechnology (Core)

LIGU	of Fracticals / Fatorials Food Brotechnology (dole)
1	Microbiological examination of fresh and canned foods
2	Microbiological examination of spoiled foods and fruits.
3	Microbiological examination of milk by Breeds method/Haemocytometer count
4	Microbiological quality testing of milk (MBRT test)
5	Most Probable Number [MPN] Test.
6	Estimation of Carbohydrate / Protein / lipid from food samples [e.g. Milk, cereals, grains].
7	Isolation and identification of pathogenic microorganisms using selective and differential Media.
8	Microscopic observation of different Fungi from spoiled foods.

List of Practicals / Tutorials: Plant Biotechnology (Elective)

	01110000000 / 100011010 110110 2100001111010 By (21000110)
1	Preparation of MS media for inoculation
2	Micropropogation through nodal explants
3	Callus induction
4	Mass multiplication of banana
5	Agrobacterium tumefaciens mediated plant transformation
6	Protoplast isolation
7	Embryo dissection and culture
8	DNA isolation of plant material

List of Practicals / Tutorials: Microbial Technology (Elective)

1	Production of cellulase enzyme by solid-state fermentation.
2	Saccharification of agro-waste by cellulase enzyme.
3	Bioassay of antibiotics
4	Production of citric acid by submerged fermentation
5	Production of protease by submerged fermentation.
6	Single cell oil production by Yeast
7	Production of Yoghurt
8	Downstream processing of penicillin

List of Practicals / Tutorials: Environmental Chemistry (Elective)

1	Spectrophotometric analysis of nitrate.
2	Spectrophotometric analysis of nitrite.
3	Analysis of ammonia.
4	Determination of sulphate by turbidometric method.
5	Determination of zinc by EDTA complexometic reaction.
6	Analysis of Total Hardness, Ca ⁺² Hardness and Mg ⁺² Hardness.
7	Analysis of Ca ⁺² from egg shell.
8	Analysis of sulfite.

List of Practicals / Tutorials: Clinical Biochemistry (Elective)

1	Preparation of standard solution, molar solution and other reagents
2	Analysis of normal and abnormal urine
3	Estimation of blood /serum glucose by various methods/ GTT
4	Glycosylated Hb, Hb Electrophoresis
5	Estimation Bilirubin, direct, total
6	Estimation of total protein and A/G ratio
7	Electrophoresis of plasma proteins
8	Estimation of total cholesterol and its fractions
9	Estimation of total lipids
10	Estimation of SGPT, SGOT
11	Hormone estimation: Determination of T3 or T4 by ELISA

1	Laboratory Manual of Food Microbiology by Neelima Garg, K.L. Garg, K.G. Mukerji (2013).
	ISBN: 9789389633023.
2	Analytical Food Microbiology: A Laboratory Manual by Ahmed E. Yousef, Joy G. Waite-Cusic,
	Jennifer J. Perry (2022). ISBN: 9780470425114.
3	A Laboratory Manual of Food Analysis by Shalini Sehgal (2020).ISBN: 9789389633238.
4	Standard Methods of Biochemical Analysis by S. R. Thimmaiah (2009). ISBN: 8176630675
	9788176630672.

5	Experiments in microbiology, Plant Pathology and Biotechnology by K.R. Aneja(2005). New
	Age International Publishers, New Delhi, ISBN 978-81-224-1494-3.
6	Practical Pharmaceutical Analytical Chemistry by Alam MM, Akhtar Mymoona, Husain Asif,
	Shaquiquzzaman M (2010). ISBN: 9789354660429.
7	Text books of Medical Laboratory Technology by Dr. Praful B. Godkar (Reprint 2021),
	Bhalani Publishing House. ISBN-13:978-9381496190.
8	Practical application of plant molecular biology - R J Henry, Chapman & Hall. 3/4 Elements of
	Biotechnology - P K Gupta.

Sup	Supplementary learning Material:		
1	https://nptel.ac.in/		
2	https://swayam.gov.in/		
3	https://diksha.gov.in/		
4	https://epathshala.nic.in/		

Pedagogy:	
lands on training	
Discussion with students	
Demonstration	
Model	
Chart	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	U	Α	N	E	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	January 2023
Last Reviewed on (Month-Year):	February 2023
Next Review on (Month-Year):	April 2025

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Plant Biotechnology

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand tools and techniques of plant genetic engineering.
 - **b)** Learn molecular biology of nitrogen fixation, nif gene transfer, herbicide resistant plants production.
 - **c)** Gain knowledge of transgenic plants for agriculture and commercial applications.
 - **d)** Acquire knowledge of plant tissue culture techniques

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)	
Lecture Tutoria		Dragtigal	Proctical Credits		The	eory	J/V/P*		Total
Lecture	i utoriai	Plattital		Internal	External	Internal	External	Tutai	
3	1		4	40/16	60/24			100/40	

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Plant biotechnology present scenario, Micropropogation and its application; Types						
	of different organ culture and its application; Somaclonal variation: Introduction,						
	Different pathways of somaclonal variation; factor affecting of somaclonal						
	variation, Detection of somaclonal variation; Somaclonal variation its application in						
	crop improvement.						
2	Chloroplast transformation: Structure of chloroplast; Plastid chromosome;	15					
	Transformation methods-Agrobacterium mediated transformation, Particle gun						
	method, Gene replacement, Gene insertion; Limitation of chloroplast						
	transformation; Application of chloroplast transformation.						

3	Secondary metabolite: Role of secondary metabolites, Basic biosynthetic pathways,	15
	Techniques used in biosynthesis, Source of secondary metabolites; criteria for cell	
	selection, factor affecting the culture of cells, Different bioreactors and their use in	
	secondary metabolites production, Production of bioactive secondary metabolites	
	by plant tissue culture.	
4	Transgenic plants production: Development of abiotic (Insect, Disease, Herbicide)	15
	and biotic (Drought) resistant plants.	
	Peptide production, biodegradable plastic and edible vaccine.	
	DNA barcoding in plants its application.	

1	An introduction to Plant Tissue culture by Razdan. M.K. (2003). Oxford & IBH Publishing Co, New Delhi. ISBN-10: 9788120417939, ISBN-13: 978-8120417939.
2	Plant Biotechnology: An Introduction to Genetic Engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. (2008). Oxford University Press. ISBN: 978-0199282616.
3	Introduction of plant biotechnology by H.S. Chawla. (2009). Third Edition; Oxford and IBH publishing Co. Pvt. Ltd, New Delhi. ISBN: 9781315275369.
4	Applied and fundamental aspects of plant cell tissue and organ culture by Reinert & Bajaj Y P S. (1989). Springer Verlag. ISBN: 978-0387076775.
5	Cell culture and somatic cell genetics of plants: Plant Regeneration and Genetic Variability by Indra K Vasil. (1987). (Vols. 1 to 3) – Academic Press Inc. ISBN: 978-01271500531.
6	Plant cell and tissue culture by S. Narayanswamy (1997). Tata Mc Graw Hill Publishing Co. ISBN: 0074602772, 9780074602775.

Sup	Supplementary learning Material:		
1	https://nptel.ac.in/		
2	https://swayam.gov.in/		
3	https://diksha.gov.in/		
4	https://epathshala.nic.in/		

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R: Remembering; U: Understanding; A: Applying;
R U A N E C			E	C	N: Analyzing; E: Evaluating; C: Creating	
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course:	25
	Students will be able to acquire knowledge of tools and techniques of	
	micropropagation and somaclonal variation.	
CO-2	Students will get familiar with basic methods and applications of	25
	chloroplast transformation.	
CO-3	Students will be able to acquire knowledge of basic biosynthetic	25
	pathways of secondary metabolites and it's production by plant tissue	
	culture techniques.	
CO-4	Students will be able to understand transgenic plants for vaccine	25
	production and other agriculture and commercial applications.	

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	January 2023				
Last Reviewed on (Month-Year):	February 2023				
Next Review on (Month-Year):	April 2025				

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Microbial Technology

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Exploit microorganisms for industrial product production (primary metabolites).
- **b)** Understand industrial production of secondary metabolites using microorganisms (e.g., antibiotics).
- c) Know steroid biotransformation and ergot alkaloids production, biofuels.
- d) Identify food and dairy products production e.g., Cheese, yoghurt, Beer, Wine.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	Examination Marks (Maximum / Pas			sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	i utoriai	Fractical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Scope of Microbial biotechnology.	15
	Microbial production and applications of primary metabolites: Citric acid, Ethanol,	
	L-Glutamic acid, Vitamin B ₁₂	
	Industrially important microbial enzymes: Types, mode of action and industrial	
	applications of microbial amylases and proteases	
2	Microbial production of therapeutically important products:-	15
	Antibiotics: Penicillin, Streptomycin	
	Ergot alkaloids: Production by Saprophytic cultivation	
	Biotransformations of steroids: Hydroxylation and dehydrogenation,	
	Steroid biotransformations.	

3	Production of single cell protein from bacteria, fungi and algae, Characteristics, nutritional value and safety, substrates used, process examples, applications. Cultivation of edible and medicinal mushrooms: Nutritional and medicinal properties Production and applications of microbial exopolysaccharides: Classification, Biological functions, structure and biosynthesis of Xanthan and Alginate, Factors affecting fermentative production of exopolysaccharides and downstream processing (recovery). Production of bioplastics (Polyhydroxyalkanoates)	15
4	Microbiology and technology of fermented dairy products: Cheese making: Cheese varieties, manufacture of cheddar cheese, Sources and properties of rennets. Yoghurt making Beer and Wine production	15

rei	erence books:
1	Comprehensive biotechnology by Murray MooYoung, Editor in Chief. Elsevier Press (2011),
	2 nd Edition, 6 volume set. Volume 3: Industrial biotechnology and commodity products. ISBN:
	978-0-444-53352-4.
2	Microbial Technology - Microbial Processes Edited by Henry. J. Peppler and D. Perlman,
	(1979). 2 nd Edition, Volume I - ACADEMIC PRESS, New York San Francisco London. ISBN 0-
	12-551501-4.
3	Microbial Technology Fermentation Technology Edited by Henry. J. Peppler and D. Perlman,
	(1979) 2 nd Edition, Volume II, ACADEMIC PRESS, New York San Francisco London. ISBN 0-
	12-551502-2 (v. 2) Hardcover ISBN: 9780125515023, eBook ISBN: 9781483268279,
	Paperback ISBN: 9781483244693.
4	Biotechnology: a multi volume comprehensive treatise edited by H. J. Rehm and G. Reed
	incooperation with A. Puhler and P. Stadler (1993). 2nd edition, completely revised edition.
	VCH, (Weinheim), volume 6: Products of Primary metabolism and volume 7: Products of
	secondary metabolism ISBN 3-527-28310-2.
5	Microbiology and Technology of Fermented Foods edited by Robert W. Hutkins (2019). 2nd
	Edition, Wiley-Blackwell Publishing. ISBN: 978-1-119-02744-7.
6	Modern Industrial Microbiology and Biotechnology edited by Nduka Okafor, Benedict C.
	Okeke (2017). 2 nd edition, CRC Press, ISBN 97803677816.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to explain exploitation	25
	of microorganisms for industrial product production (primary	
	metabolites)	
CO-2	The students will learn about the industrial production of secondary	25
	metabolites using microorganisms (e.g. antibiotics)	
CO-3	The students will learn about the steroid biotransformation and ergot	25
	alkaloids production, biofuels.	
CO-4	The students will learn about the food and dairy products production	25
	e.g. Cheese, yoghurt, Beer, Wine.	

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	January 2023
Last Reviewed on (Month-Year):	February 2023
Next Review on (Month-Year):	April 2025

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Environmental Chemistry

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand structure and composition of atmosphere, greenhouse effect.
- **b)** Know water cycle, its pollutants, types of reactions in various water bodies.
- c) Recognize organic and inorganic components of soil.
- **d)** Identify biochemical cycling of elements.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Examination Marks (Maximum / Passing)				sing)
Lagtura	Tutorial	Dragtigal	Credits	Theory		J/V/P*		Total
Lecture Tutorial		Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Atmospheric Chemistry and Air Pollution: Chemical processes for formation of	15
	inorganic and organic particulate matter, thermochemical and photochemical	
	reactions in the atmosphere. Gaseous pollutants, sources, reactions, control and	
	effects of air pollutants on living and non-living things. Effects of meteorological	
	and topographical factors. Global Climate change: Ozone depletion, Acid Rain and	
	Greenhouse effect. Formation and effects of Photochemical smog.	

2	Water Chemistry and Water Pollution: Chemistry of Natural Waters, Water	15
	resources, hydrological cycle, physical and chemical properties of water,	
	complexion in natural and waste water, role of microorganisms, Water pollutants,	
	Types, Sources, Heavy metals, Metalloids Organic, Inorganic, Biological and	
	Radioactive. Types of reactions in various water bodies including marine	
	environment, Eutrophication and ecological magnification due to water pollution.	
3	Biogeochemical cycling of elements: Gaia Hypothesis, The Carbon cycle-Carbon	15
	transfer through food webs-Carbon cycling within Habitats-Carbon Monoxide	
	cycling. The Hydrogen Cycle, The oxygen Cycle. The Nitrogen Cycle-	
	Ammonification, nitrification and denitrification. The Sulfur Cycle-Oxidative and	
	reductive sulfur transformation. The phosphorus Cycle, Iron cycle, Manganese	
	Cycle and Calcium Cycle.	
4	Soil chemistry & soil composition: Soil profile: Organic & Inorganic components of	15
	soil, Physical and Chemical Properties, cation exchange capacity, soil pH,	
	environmental properties of soils. Leaching and erosion. Reactions with acids and	
	bases. Geochemical reactions that neutralize acidity. Biological Process that	
	neutralize acidity, Pesticide and Polymer Pollution. Physiochemical control of soil	
	pollution.	

1	Environmental Chemistry by Gary W. Valoon & Stephen J. Duffy (2011). 3 rd Edition a global
	perspective, Oxford University Press. ISBN 13-978-0-19-965263-1.
2	Environmental chemistry by BK Sharma (2007). 7th edition, GOEL Publishing House, Meerut
	India ISBN 81-8283-012-5.
3	Environmental Microbiology by Raina MM, Pepper IL and Gerba CP (2008). 2nd Edition,
	Academic Press. ISBN: 978-0123705198.
4	Environmental Chemistry by AK de. (2006). 6th edition. New age International (P) Ltd.,
	New Delhi, India. ISBN 81-224-1946-1.
5	Textbook of Environmental Chemistry by Tyagi OD, M Mehra and Mehta M (1996). Anmol
	Publisher; New edition. ISBN-10: 8170413524, ISBN-13:978-8170413523.

Sup	Supplementary learning Material:		
1	https://nptel.ac.in/		
2	https://swayam.gov.in/		
3	https://diksha.gov.in/		
4	https://epathshala.nic.in/		

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %		n %	R: Remembering; U: Understanding; A: Applying;			
R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating			
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	Students will be able to understand Structure and composition of	25
	atmosphere, greenhouse effect.	
CO-2	Students will be able to understand Water cycle, its pollutants, types of	25
	reactions in various water bodies.	
CO-3	Students will be able to know about Organic and inorganic components	25
	of soil.	
CO-4	Students will be able to understand Biochemical cycling of elements,	25
	reactions with acids and bases.	

Curriculum Revision:		
Version:	1.0	
Drafted on (Month-Year):	January 2023	
Last Reviewed on (Month-Year):	February 2023	
Next Review on (Month-Year):	April 2025	

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VII

Course Code: To be given by the University

Course Title: Clinical Biochemistry

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Learn specimen collection, preservation and transportation, composition of various body fluids.
- **b)** Know acid base balance and disorders, types, and functions of carbohydrates.
- c) Understand clinical enzymology, hemoglobin.
- **d)** Identify general organ function tests.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	rks (Maxi	mum / Pas	sing)
Lecture Tutorial		ial Duantinal	Credits	The	eory	J/V	/P*	Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Introduction to clinical biochemistry: Definition and scope of clinical biochemistry	15
	in diagnosis, use of clinical laboratory and interpretation of results.	
	Specimen collection, preservation and transportation (blood, urine, spinal fluid,	
	saliva, synovial fluid, amniotic fluid).	
	Chemistry, composition & Chemistry, compositio	
	amp; synovial fluid.	

2	Water and electrolytes balances and Imbalance: Distribution of body water and	15
	electrolytes in body, normal water balance, normal electrolyte balance, regulatory	
	mechanisms, abnormal water and electrolyte metabolism, dehydration,	
	pathological variations of water and electrolyte, water Intoxication.	
	Acid base balance and Imbalance: Acid base balance in normal health, Buffers, Acid	
	produced in the body, mechanism of regulation of pH, role of different buffer	
	system, role of respiration in acid base regulation, Renal mechanisms of regulation	
	of acid base balance, Acid base Imbalance, respiratory and metabolic acidosis and	
	alkalosis.	
3	Clinical Enzymology: Principle of diagnostic enzymology, cell and plasma derived	15
	enzymes.	
	Clinical Significance of enzyme assays: serum enzymes in Liver, Heart, GI tract,	
	muscles, bone diseases and malignancies. Isoenzymes of LDH, CPK and ALP.	
	Biochemistry, synthesis and breakdown of Hemoglobin, Hemoglobinopathies,	
	Thalessemia, Bilirubin metabolism, Jaundice, Vandenbergh test.	
	Biochemistry of Diabetes mellitus, Atherosclerosis, Fatty liver, and obesity.	
4	Liver function tests: Functions of Liver, Test based on abnormalities of Bile	15
	pigments, Test based on Livers Part in carbohydrate metabolism, Test based on	
	changes in Plasma proteins, Test based on abnormalities of the lipids, test based on	
	the detoxicating function of the liver, test based on Excretory functions of the liver,	
	test based on formation of prothrombin, amino acid catabolism, drug metabolism.	
	Thyroid function tests: Test based on Primary function of thyroid, tests measuring	
	blood level of thyroid hormones, tests based on metabolic effects of thyroid	
	hormones, thyroid scanning, Immunological tests for thyroid functions.	
	Gastric function tests: Examination of Resting content, fractional Gastric Analysis	
	using test meals, Achylia GaSTICA, Stimulation tests, serum pepsinogen, Tube less	
	Gastric Analysis.	

1	Tietz Textbook of Clinical Chemistry by Carl A. Burtis, Edward R. Ashwood (1998). Harcourt
	Brace and Company Aisa Pvt. Ltd. ISBN-13:978-0721644721.
2	Tietz Textbook of Clinical Chemistry and Molecular Diagnostics By Carl A. Burtis, Edward R.
	Ashwood and David E. Bruns (2013). 4th Edition. ISBN- 13:9780721601892.
3	Textbooks of Medical Laboratory Technology volume I and II by Dr. Praful B. Godkar (2020).

- Textbooks of Medical Laboratory Technology volume I and II by Dr. Praful B. Godkar (2020) ISBN-13:9789381496190.
- 4 Textbook of Biochemistry for Medical Students by DM Vasudevan, Sreekumari S, Kannan Vaidyanathan (2019). ISBN-13:978-9389034981.
- Textbook of medical biochemistry by MN Chatterjea and Rana Shinde (2012). 8th edition. ISBN-13:978-9350254844.

6 Henry's Clinical Diagnosis and Management by Laboratory Methods 2 Richard McPherson Matthew Pincus (2021). ISBN: 9780323673204.

Sup	Supplementary learning Material:				
1	1 https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy:

Direct Classroom teaching

Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	Students will be able to understand about the Specimen collection,	25
	preservation and transportation, composition of various body fluids.	
CO-2	Students will be able to understand about the Acid base balance and	25
	disorders, types, and functions of carbohydrates.	
CO-3	Students will be able to know about the clinical enzymology,	25
	haemoglobin.	
CO-4	Students will be able to understand about the general organ function	25
	tests biochemistry of diabetes mellitus, obesity.	

Curriculum Revision:							
Version:	1.0						
Drafted on (Month-Year):	January 2023						
Last Reviewed on (Month-Year):	February 2023						
Next Review on (Month-Year):	April 2025						

Effective from Academic Batch: 2020-21

Programme: M.Sc. Biotechnology (Industrial Biotechnology)

Semester: VIII

Course Code: To be given by the University

Course Title: Industrial Waste Management

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand the methods for measurement of water pollution for wastewater management.
- **b)** Know aerobic and anaerobic biological treatment process.
- c) Understand the method of biomedical waste and hazardous waste management
- **d)** Know the dairy wastewaters treatment and tanning Industry effluents treatment method.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial	Practical Credits		Theory		J/V/P*		Total
Lecture	i utoi iai	Fractical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Wastewater management: Types and sources of water pollutants, Methods for	15					
	measurement of water pollutants: BOD, COD, coliforms, biotechnological methods						
	used for monitoring of pollutants. Wastewater treatment methods: Primary:						
	Screening, grit removal, floatation tank, coagulation, flocculation, sedimentation.						
	Secondary treatment methods: Biological treatment methods examples of attached						
	and suspended techniques. Tertiary treatment methods: Nutrients removal,						
	advanced oxidation processes and sludge treatment methods.						

2	Aerobic Biological Treatment Processes: Process fundamentals Methods of	15						
	aeration, design considerations, Operational difficulties. Description, design and							
	operation of aerobic treatment systems: Activated Sludge process, Trickling Filters,							
	Waste stabilization ponds. Anaerobic Biological Treatment Processes:							
	Description, design and operation of attached and suspended growth processes:							
	Anaerobic digestion, up flow anaerobic sludge blanket reactors (UASB), Septic tank.							
	Solid Waste Management: Composting.							
3	Biomedical waste management: Introduction, Types of biomedical waste,	15						
	sources of biomedical wastes, Hazardous biomedical wastes. Waste segregation							
	and labeling, Handling, Collection, Storage and transportation.							
	Hazardous Waste management: Definition, sources, characteristics and							
	categories of hazardous wastes. Toxicology and Risk Assessment, Environmental							
	Fate of Hazardous Materials. Hazardous waste collection and transportation.							
	Hazardous waste treatment technologies: Physical, chemical.							
4	Dairy: General Characteristics of Dairy Wastewaters and Treatment of Dairy	15						
	Effluent Wastewater. Paper Pulp: Problems Related with Pulp and Paper Industry.							
	Textile industry: Characterization of textile industrial wastewater, Treatment							
	Technologies of textile industrial effluents.							
	Tanning Industry: Characterization of Effluents, Environmental Impact of							
	Tannery Effluents.							
	Pharmaceutical Industry: Characterization of effluents, treatment technologies							
	for pharmaceutical effluents.							

1101	er ence Booksi
1	Wastewater microbiology by Bitton Gabriel., (2005). Third edition, John Wiley & Sons. ISBN:
	0-471-65071-4.
2	Hazardous Wastes and Solid Wastes, Liu, D.H.F and Liptak, B.G (2000), Lewis Publishers,
	New York.
3	Wastewater treatment for pollution control bySoli J. Arceivala. (2006). 3rd edition. McGraw-
	Hill-Publishing Company Limited. ISBN: 0-07-062099-7.
4	Biomedical waste disposal by Singh Anantpreet, Kam sukhjit. (2012) Jaypee Brothers
	Medical Publishers Pvt. Ltd. ISBN: 9789350255544.
5	Handbook of Solid Waste Management by Tchobanoglous, George, and Frank Kreith, eds.
	(2002). 2 nd eds. New York: McGRAW-HILL. ISBN: 9780071356237.
6	Electronic waste management: design, analysis, and application byR. E. Hester and R M
	Harrison. (2009). 1st Edition. Royal Society of Chemistry Publishing. ISBN: 978-0-
	854041121.

Sup	Supplementary learning Material:						
1	https://nptel.ac.in/						
2	https://swayam.gov.in/						
3	https://diksha.gov.in/						
4	https://epathshala.nic.in/						

Direct Classroom teaching

Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R: Remembering; U: Understanding; A: Applying;
R	U A N E C			E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have proper understanding of:	25
	Waste water management, various measurements methods and their	
	treatment.	
CO-2	The students will gain knowledge about various Aerobic and anaerobic	25
	biological treatment process	
CO-3	The students will learn about the Biochemical and Hazardous Waste	25
	management methods will be known	
CO-4	The students will learn about the Wastewaters and Treatment of Dairy	25
	Effluent, Paper pulp and textile industry.	

Curriculum Revision:						
Version:	1.0					
Drafted on (Month-Year):	January 2023					
Last Reviewed on (Month-Year):	February 2023					
Next Review on (Month-Year):	April 2025					

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Bioprocess Engineering and Technology

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Design a fermenter and media for industrial fermentations.
- **b)** Know the sterilization of media and air, microbial growth kinetics.
- c) Understand the components of aeration and agitation, scale up and scale down, control systems.
- **d)** Know the bioprocess kinetics.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours							
1	Introduction to Bioprocess technology, range of fermentation processes,	15							
	Chronological development of fermentation industry, different types of								
	fermentation processes, fermentation economics.								
	Isolation, primary and secondary screening, preservation, maintenance and								
	improvement of Industrially important organisms.								
2	Media for industrial fermentation: Components of medium, Addition of precursor								
	and Metabolic regulators to media, Media optimization by conventional and								
	statistical methods (Plackett-Burman design, Response surface method)								
	Sterilization of media and air: Kinetics of medium sterilization, Design of batch								
	sterilization process, Scale up of batch sterilization process, Design of continuous								
	sterilization process, Sterilization of air by filtration, Theory and design of depth								
	filters								

3	Bioreactor design: Laboratory, pilot and large-scale reactors. Mechanical,	15							
	pneumatic and Hydrodynamic systems. Plug flow reactors, immobilization and								
	immobilized enzyme reactors.								
	Scale up and Scale down and Aseptic operations & containment. Components of								
	Agitation and aeration. Inoculum development.								
4	Bioprocess kinetics: Kinetics of growth and substrate utilization in batch, fed batch								
	and Continuous fermentation systems.								
	Control of process parameters: Instrumentation for monitoring bioreactor and								
	fermentation processes, Sensors, Controllers, fermentation control systems and								
	architecture, Incubation and sequence control, advanced control.								

1101	erence books.
1	Principles of Fermentation Technology by Peter F Stanbury, Allan Whitaker, Stephen J Hall.
	(2016). 3 rd edition by Butterworth-Heinemann is an imprint of Elsevier. ISBN: 978-0-08-
	099953-1
2	Comprehensive biotechnology by Murray Moo Young, Editor in Chief. Pergamon Press,
	Oxford, (1985). 4 volume set. Volume Editors - Harvey W. Blanch, Stephen Drew and Daniel
	I.C. Wang. ISBN 10: 008026204X ISBN 13: 9780080262048.
3	Methods in Industrial Microbiology by BohumilSikyta (1983). Ellis Horwood Publisher. ISBN
	10:0853122032, 13:9780853122036.
4	Fermentation Microbiology and Biotechnology by E.M.T. El-Mansi, C.F.A. Bryce, Arnold L.
	Demain, A.R. Allman(2006). 2nd Edition, CRC Press. ISBN 13:978-0-8493-5334-5.
5	Modern Industrial Microbiology and Biotechnology by Nduka Okafor, Benedict C.
	Okeke.(2017).2 nd edition by CRC Press. ISBN 13:978-1-1385-5018-6.
6	Industrial Microbiology: An Introduction by Mickael J. Waites, Neil L. Morgan, John S. Rockey
	and Gary Higton (2001). Blackwell Science Ltd. ISBN 0-632-05307-0.
7	Upstream Industrial Biotechnology Volume 1_ Expression Systems and Process
	Development; Volume 2_ Equipment, Process Design, Sensing, Control, and cGMP Operations
	by Michael C. Flickinger (2013). John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN
	978-1-118-13123-7.

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have knowledge about the	25
	design of fermenter, media for industrial fermentations	
CO-2	The students will learn about the sterilization of media and air,	25
	microbial growth kinetics	
CO-3	The students will learn about the components of aeration and agitation,	25
	scale up and scale down, Control systems	
CO-4	The students will learn about the downstream processing, continuous	25
	fermentation systems, control of process parameters.	

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	January 2023				
Last Reviewed on (Month-Year):	February 2023				
Next Review on (Month-Year):	April 2025				

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: O'-mics

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand the genome and proteome, Advance sequencing technique.
- **b)** Know human genome project, large scale sequencing methods, some model organisms and their genome projects.
- c) Identify Protein structure and function, Methods to study protein-protein interactions.
- **d)** Know the concept development about transcriptomics and metabolomics.

Teaching & Examination Scheme:

Contact hours per week			Contact hours per week Course Examination Marks (Maximum / Pa			mum / Pas	sing)	
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Functional Genomics						
	Introduction to the proteomics, Metagenomics and Genomics, Structure of genome,						
	Mechanism of genome evolution: Nucleotide substitution, CpG islands, Histone						
	modification, Genome size-C value paradox and C-value enigma, Codon usage bias,						
	Analysis and Annotation-ORF. DNA sequencing Techniques: sequencing by Ligation						
	method, Cyclic Array sequencing, RNA sequencing method, other features of						
	nucleic acid sequencing.						

2	Human Genome Project and Model organism	15					
	Human genome project- Strategies for large-scale sequencing projects; landmarks on chromosomes generated by various mapping methods; BAC libraries and shotgun libraries preparation; Physical map-cytogenetic map, contig map, restriction map. Model organisms and other genome projects (<i>Arabidopsis, Caenorhabditis elegans, Drosophila melanogaster, Musmusculus</i>); Comparative genomics of relevant organisms such as pathogens and non-pathogens						
3	Proteomics	15					
	Relationship between protein structure and function, Identification and analysis of						
	proteins by 2D analysis; Spot visualization and picking; Tryptic digestion of protein						
	and peptide fingerprinting; Mass spectrometry: ion source (MALDI, spray sources);						
	analyzer (ToF, quadrupole, quadrupole ion trap) and detector. Protein interaction						
	maps. Protein arrays-definition, applications- diagnostics, expression profiling.						
4	Transcriptomics	15					
	Transcriptomics: Comparative transcriptomics, Differential gene expression;						
	generation of cDNA expression libraries, Serial Analysis of Gene Expression (SAGE),						
	Expressed Sequence Tags (EST), Genotyping/SNP detection; Gel based and Non Gel						
	based method (Taq man Asaay and Molecular beacons), DNA Microarray						
	technology: Principle, uses and Applications of microarrays, Computational						
	analysis of microarray data.						

- Molecular Biotechnology: Principles and Applications of Recombinant DNA by Glick, Bernard R., Patten, Cheryl L., Pasternak, Jack J. (2010). 4th Edsition, Published by ASM Press. ISBN: 978-1-683-67366-8.
 Hand book of Comparative Genomics: Principle and Methodology by Cecilia Saccone,
- Hand book of Comparative Genomics: Principle and Methodology by Cecilia Saccone, Graziano Pesole, Wiley-Liss (25 February 2003). 1stedition.ISBN-10:9780471391289, ISBN-13:978-04713912890.
- Proteomics: From protein sequencing to function by S.R. Pennington and M.J. Dunn, (2002). Viva Books, Private Ltd. ISBN-10:9788176492904.
- 4 Discovering Genomics, Proteomics and Bioinfo by AM Campbell (2 March 2006). CSH Press, 2nd edition. ISBN-10:0805382198, ISBN-13:978-805382198.
- 5 Principles of Gene Manipulation and Genomics by Primrose (3 June 2013). Wiley-Blackwell; 7thedition. ISBN-13:978-1405135443.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R: Remembering; U: Understanding; A: Applying;
R	R U A N E C				С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage			
CO-1	At the end of this course, the student will clear understanding of	25			
	genome and proteome, DNA microarray				
CO-2	The students will learn about the human genome project, Large scale	25			
	sequencing methods, some model organisms and their genome projects				
CO-3	The students will learn about the protein structure and function, 25				
	Methods to study protein-protein interactions				
CO-4	The students will learn about the concept development about	25			
	transcriptomics and metabolomics				

Curriculum Revision:			
Version:	1.0		
Drafted on (Month-Year):	January 2023		
Last Reviewed on (Month-Year):	February 2023		
Next Review on (Month-Year):	April 2025		

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Lab - I (Industrial Waste Management and Bioprocess Engineering and

Technology)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)				sing)	
Locturo	Tutorial	Dragtical	Credits	The	eory	J/V	//P*	Total
Lecture		Practical		Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} **J**: Jury; **V**: Viva; **P**: Practical

List of Practicals / Tutorials: Industrial Waste Management

1	Determination of Dissolved oxygen
2	Determination of BOD of sewage
3	Determination of COD sewage
4	Estimation of Total Solids (TS)
5	Estimation of Total Suspended Solids (TSS)
6	Estimation of Total Dissolved Solids (TDS)
7	Estimation of MLSS/MLVSS
8	IMViC tests.
9	Routine Bacteriological analysis of water: Tests for coliforms: Presumptive test,
	Confirmatory test and Completed test.
10	Determination of MPN of coliform.
11	Field trip to a wastewater treatment plant.

List of Practicals / Tutorials: Bioprocess Engineering & Technology

	7 1 0 0
1	Screening for amylase producing organisms
2	Screening for organic acid producing microorganisms
3	Isolation of antibiotic producing microorganisms by crowded plate technique
4	Isolation and culturing of yeasts
5	Separation of amino acids by chromatography

6	Estimation of glucose by DNS method
7	Estimation of ethanol by dichromate method
8	Immobilization of microbial cells by entrapment method

Refe	erence Books::						
1	Molecular Biotechnology: Principles and Applications of Recombinant DNA by Glick,						
	Bernard R., Patten, Cheryl L., Pasternak, Jack J(2010). Fourth edition, Published by ASM						
	Press, ISBN: 978-1-683-67366-8.						
2	Hand book of Comparative Genomics: Principle and Methodology by Cecilia Saccone,						
	Graziano Pesole, (25 February 2003). Wiley-Liss; 1 st edition. ISBN-						
	10:9780471391289; ISBN-13:978-0471391289.						
3	Proteomics: From protein sequencing to function by S.R. Pennington and M.J. Dunn (2002).						
	Viva Books, Private Ltd. ISBN-10:9788176492904.						
4	Discovering Genomics, Proteomics and Bioinfo by AM Campbell (2 March 2006).C.S.H.						
	Press, 2 nd edition. ISBN-10:9780805382198. ISBN-13:978-0805382198.						
5	Principles of Gene Manipulation and Genomics by Primrose (3 June 2013). Wiley-Blackwell;						
	7 th edition. ISBN-13:978-1405135443.						

Sup	Supplementary learning Material:			
1	https://nptel.ac.in/			
2	https://swayam.gov.in/			
3	https://diksha.gov.in/			
4	https://epathshala.nic.in/			

Hands on training Discussion with students Demonstration

Model

Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:		
Version:	1.0	
Drafted on (Month-Year):	January 2023	
Last Reviewed on (Month-Year):	February 2023	
Next Review on (Month-Year):	April 2025	

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Lab – II (O'-mics and Elective Course)

Course Group: CORE

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai			Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: O-mics (Core)

1	Introduction to Reactome to understand metabolism
2	Role of ipath in Metabolomics
3	Designing a primer
4	KEGG tool: An integrated pathway Analysis for Genomics
5	Use of pathway Hunter tool to shorten the pathway analysis.
6	Total Protein profile of plant system using PAGE.
7	Determination of molecular weight and quantitation of separated proteins.

List of Practicals / Tutorials: Animal Biotechnology (Elective)

1	Introduction of animal tissue culture laboratory with necessary equipment and accessories.
2	Preparation of culture media
3	Sterilization of culture media
4	Primary culture from Chick embryo.
5	Cell counting using hemocytometer.
6	Cell viability
7	Organ culture – trachea culture
8	Short term lymphocyte culture.
9	Chromosome preparation from cultured cells.
10	Cytotoxicity test-MTT

List of Practicals / Tutorials: Bioseparation Technology (Elective)

1	Determination of dry weight and wet weight of cells.
2	Determination of total protein of cells by alkali lysis.
3	Recovery and estimation of penicillin.
4	Ammonium Sulphate fractionation of protein.
5	Dialysis of fractionated proteins.
6	Recovery of protein by acetone precipitation.
7	Demonstration of chromatography techniques.

List of Practicals / Tutorials: Protein Engineering (Elective)

1	To perform protein extraction.
2	Determine an importance of various electrophoresis techniques in protein engineering.
3	A study an application of liquid chromatographic technique.
4	To understand the importance of gas chromatographic techniques with demonstration.
5	Understanding of principles and applications of MALDI-TOF and SELDI TOFF

Practicals / Tutorials: Environment Policy and Legislation (Elective)

1	Studies of Tools related to Environmental risk analysis.
2	Case Study: Implementing environmental policies in India.
3	Case Study: Evolution of India's environmental policy.
4	Review of different case studies on environmental issues.
5	Case Study: Green & Clean policy adopted for reducing energy, water, and carbon footprint.
6	Case Study: Environment Management Strategies
7	Case Study: India's trade liberalization.

Reference Books:

1	Bioinformatics For Beginners: A Laboratory Manual by Department of Computer Science
	PSGR (2018).Published by Blue Hill Publishers. ISBN-9788193708828.
2	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by Andreas D.
	Baxevanis (2001). Published by A John Wiley & Sons, Inc., Publication. ISBN-0471383902.
3	Essential Bioinformatics by Jin Xiong (13 March 2006). Published by Cambridge University
	Press. ISBN-978-0521600828.
4	Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation and Cell Technology by
	Michael C Flickinger (2010). Published by A John Wiley & Sons, Inc., Publication. ISBN-
	9780471799306.
5	Bioseparations Downstream Processing for Biotechnology by Paul A Belter and E L Cussler
	(1988). Published by Wiley India Pvt Ltd. ISBN-9788126531974.
6	Downstream Processing and Bioseparation: Recovery and Purification of Biological Products
	by Jean-François Hamel and Subhas K Sikdar (1989). Published by ACS publications. ISBN-
	9780841217386.

7	Handbook of Methods in Environmental Studiesby S. K. Maiti. (2003). Vol. 2: Air, Noise, Soil and Overburden Analysis, ABD Publishers, Jaipur. ISBN: 8185771588, 9788185771588.
8	
O	CPCB (2008) Guidelines for water quality monitoring. Parivesh Bhawan, Central Pollution
	Control Board, New Delhi.
9	Standard methods for the examination of water and wastewater by Baird, R., & Bridgewater,
	L. (2017). 23rd edition. Washington, D.C.: American Public Health Association. ISBN:
	9780875530130.
10	Handbook Of Methods in Environmental Studies by S. K. Maiti. (2004). Vol. 1: Water and
	Wastewater Analysis. ABD Publishers, Jaipur. ISBN: 9350440180, 9789350440186.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Hands on training Discussion with students Demonstration

Model

Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	January 2023				
Last Reviewed on (Month-Year):	February 2023				
Next Review on (Month-Year):	April 2025				

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Animal Biotechnology

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Understand the scope of Animal Biotechnology.
- **b)** Know basic techniques in animal cell culture.
- c) Understand applications of animal tissue culture.
- **d)** Identify techniques for producing transgenic animals.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Logtuno	Tutorial	l Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai			Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Introduction to Animal Biotechnology: Historical background, Advantages of	15
	tissue culture, limitations, major differences in vitro, types of tissue culture.	
	Biology of cultured cells: Brief description on cell adhesion, cell proliferation, energy metabolism and origin of cultured cells.	
	General out-line of cell types: epithelial tissue, connective tissue, muscular tissue	
	and nervous tissue.	
	Equipments and materials for animal cell culture technology: Inverted microscope, Laminar flow-hood, humid CO ₂ incubator, centrifuges, refrigerators and other miscellaneous equipments. Aseptic Techniques: Objectives of aseptic techniques, elements of aseptic environment, sterile handling. Sterilization: Different types - dry heat (hot air oven), wet heat (autoclaving), various chemical agents used in sterilization, irradiation techniques (UV and Gamma Ray). Biohazards and Bioethics	

2	Defined media and supplements: Physicochemical properties, Balanced	15
	salt solutions, serum, selection of medium and serum.	
	Serum - Free Media: Disadvantages of serum, advantages of Serum - free media	
	Preparation of serum free media, Animal protein free media.	
	Primary culture: Initiation of primary cell culture, isolation of tissue, types of	
	primary culture, mechanical and enzymatic disaggregation.	
	Subculture and cell lines (Subculture and propagation, routine maintenance,	
	subculture of monolayer and suspension cultures), Types of Cell cloning	
	Monitoring for contamination – Visible microbial contamination, Mycoplasma,	
	Viral contamination, Eradication of contamination.	
3	Cell cloning and selection: Feeder layer, suspension cloning, separation of clones.	15
	Cell separation: Centrifugation, Antibody based techniques, FACS.	
	Cell differentiation: Stem Cell plasticity, markers of differentiation, Induction	
	of differentiation, differentiation and malignancy.	
	Transformation and Immortalization: Immortalization with viral genes,	
	Immortalization of human fibroblasts, telomerase induced immortalization,	
	Aberrant growth control, Tumorigenicity.	
	Characterization: Need for characterization, characterization based on cell	
	morphology, DNA and RNA content, enzyme activity and antigenic markers.	
4	Culture of specialized cells: Mammary epithelium, liver, epidermal keritinocytes,	15
	adipose tissue, muscle, glial cells, human astrocytes, lymphocytes, testis and ovary.	
	Stem cells, germ cells and aminocytes: Culture of embryonic stem cells, culture	
	of aminocytes, applications of stem cells.	
	Embryo technology: Embryo sexing, embryo splitting; Assisted reproductive	
	techniques (IVF, ISCI, ZIFT, GIFT)	
	Scale-up and automation: Scale – up in suspension and monolayer culture.	
	Three-Dimensional Cultures: Histotypic and organotypic cultures, tissue	
	equivalents.	
	Transgenic Animals: -Method and types for producing transgenic Animals,	
	examples and application	

1	Culture of animal cells: A manual of basic technique by R. Ian Freshney (2021). Wiley
	Publication. ISBN: 978-1-119-51304-9.
2	Animal cell culture & technology by M. Butler (2003). ISBN 9781859960493.
3	Animal cell culture techniques by M. Clynes, Springer (1998). ISBN: 978-3-642-80412-0.
4	Animal Biotechnology by Young, Murray, Moo. (1989), 1st Edition, Pergamon Press, Oxford.
	ISBN-13:978-0080347301.
5	Animal Cell Biotechnology by Spier (1994).6th Edition R.E. Academic press. ISBN-978-0-08-
	092599-8.
6	Animal biotechnology by P. Ramadass (2017). MJP Publishers. ISBN 13: 9788180940422
7	Biotechnology by U. Styanarayan (Reprints 2020). Books and Allied (P) Ltd. ISBN-13: 978-
	8187134909.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Direct Classroom teaching Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R: Remembering; U: Understanding; A: Applying;	
R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	Students will be able to know the scope of Animal Biotechnology;	25
	understand about General out-line of cell types, Equipment, and	
	materials for animal cell culture technology and about Biohazards and	
	Bioethics in animal cell culture.	
CO-2	Students will be able to understand different media and supplements	25
	used in the cell culture with different basic techniques in animal cell	
	culture.	
CO-3	Students can understand techniques in Cell cloning and selection of	25
	animal cells for culture.	
CO-4	Students will learn techniques for culture of specialized cells, producing	25
	transgenic animals and Applications of animal tissue culture.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Bioseparation Technology

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand about various downstream processing.
- **b)** Learn product isolation and purification methods.
- c) Know chromatography techniques for product isolation and purification.
- **d)** Gain knowledge final Product Purification and Preparation.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	rks (Maxi	mum / Pas	sing)	
Lastuna	Tutorial	Duo eti ce l	Practical Credits		The	eory	J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Totai	
3	1		4	40/16	60/24			100/40	

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Introduction to downstream processing, Characteristics of fermentation broth and						
	its pretreatment, Separation of cells and suspended solids: Filtration: theory of						
	filtration, use of filter aids, Batch filters, Continuous filters, cross flow filtration.						
	Membrane processes - Dialysis, ultrafiltration, Reverse osmosis and						
	electrodialysis						

2	Product isolation methods:	15					
	Centrifugation: Cell aggregation and flocculation, Types of commercial centrifuges						
	Cell disruption by physical and chemical methods,						
	Liquid-liquid extraction-choice of solvent, co current and counter current						
	extraction,						
	Centrifugal extractor, Solvent recovery, Two-phase aqueous extraction system,						
	super critical fluid extraction.						
3	Chromatography techniques for product isolation and purification:	15					
	Adsorption chromatography, Gel permeation chromatography, Ion-exchange						
	chromatography, hydrophobic chromatography, Affinity chromatography, High						
	performance chromatography (HPLC). FPLC, Expanded bed chromatography						
4							
	Crystallization; Importance, Challenge, Process						
	Drying: Vaccum Tray, Freeze, Rotary-Drum, Spray, Conveyor						
	Lyophilisation, Formulation Strategies						
	A Detailed Case studies on the Extraction and Recovery of Ethanol, Citric acid and						
	Penicillin.						

1	Principles of Fermentation Technology by Peter F. Stanbury, Allan Whitaker and Stephen J.
	Hall. (14 September 2016). Butterworth-Heinemann; 3 rd edition. ISBN-10:0080999530.
2	Fermentation Microbiology and Biotechnology by E.M.T. El-Mansi and C.F.A. Bryee (26
	August 1999). CRC Press; 1stedition.ISBN-10:0748407347. ISBN-13:9780748407347.
3	Comprehensive Biotechnology by Murray Moo Young (17 July 2019). Pergamon Press Inc;
	3rdedition. ISBN-10:0444640460, ISBN-13:978-0444640468.
4	Biochemical Engineering Fundamentals by J.E. Bailey & D.F. Ollis. (1 July 2017). McGraw Hill
	Education; 2 nd edition. ISBN-10:9780070701236, ISBN-13:978-0070701236.
5	Downstream industrial biotechnology: recovery and purification edited by Michael C.
	Flickinger (16 July 2013). Wiley: 1st edition. ASIN:B00E0J2I02.

Sup	Supplementary learning Material:							
1	1 https://nptel.ac.in/							
2 https://swayam.gov.in/								
3	https://diksha.gov.in/							
4	https://epathshala.nic.in/							

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R U A N E C		C	N: Analyzing; E: Evaluating; C: Creating			
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the students will have clear understanding of	25
	various downstream processing	
CO-2	Students will be able to execute product isolation and purification	25
	methods	
CO-3	Students will be able to identify chromatographic techniques for	25
	product isolation and purification	
CO-4	Students will be able to learn final product purification and preparation	25
	by crystallization, drying and lyophilisation.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Protein Engineering

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Recognize different tools and methods used in proteomic study.
- b) Know the sources of protein, Industrial and medical application of proteins,
- c) Understand different expression of proteins for large scale purifications,
- **d)** Execute protein engineering strategy.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maximum / Passing)		
Locturo	Tutorial	Practical	Credits	The	eory	J/V/P*	/P*	Total
Lecture	Tutoriai	Fractical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents							
1	Proteomics: Sample preparation, Gel-based proteomics - two-dimensional gel							
	electrophoresis (2-DGE), two-dimensional fluorescence difference in-gel							
	electrophoresis (DIGE), Staining methods, PF-2D, Tandem FPLC, Mass							
	spectroscopy: basic principle, ionization sources, mass analyzers, different types of							
	mass spectrometers (MALDI-TOF Q-TOF, LC-MS)							
2	Multidimensional proteomics: SELDI-TOF. Quantitative proteomics - stable isotope							
	labeling by amino acids in cell culture (SILAC), isotope-coded affinity tag (ICAT),							
	isobaric tagging for relative and absolute quantitation (iTRAQ); Label-free							
	proteomics., Nuclear magnetic resonance spectroscopy (NMR), basic principles,							
	chemical shift, spin-spin interaction, NOE, 2D-NMR, NOESY, COSEY.							

3	X-ray Crystallography: Principle of X-ray diffraction, scattering vector, structure factor, phase problem, reciprocal lattice and Ewald sphere, Miller indices, Zone axes, crystal lattice, Lane Equations, Bragg's law, special properties of protein crystals, model building, refinement and R-factor.	15
4	Protein Engineering: Protein sources, Industrial and medical application of proteins, different expression of proteins for large-scale purifications, protein engineering strategy, rational and random mutagenesis. Applications of protein engineering protein in Chemical and Medical Industries: Generation of heat stable, pH stable enzymes, application in vaccine development, drug development, sensor development. Practicals, Protein electrophoresis-1D+2D, HPLC, FPLC, MALDI-TOF & LC-MS	15

1	Principles of Protein X-Ray Crystallography [3rd ed.] by Jan Drenth. (2007). Springer New York. ISBN: 978-0-387-33746-3.
2	Protein Engineering in Industrial Biotechnology by Lilia Alberghina. (2000). 1st Edition, CRC Press. ISBN: 9780367398972.
3	Protein Engineering Protocols: Methods in Molecular Biology, Volume 352 by Katja Arndt and, Kristian Müller (2006). Humana Press. ISBN: 1-58829-072-7, 1-59745-187-8.
4	Protein Engineering by Caroline Köhrer, Uttam L. Rajbhandary (2009). Springer-Verlag New York, LLC. ISBN: 978-3-540-70941-1, 3540709371.
5	Protein Engineering Handbook Volume 3, 1 st Edition by Stefan Lutz (2012).Wiley-VCH. ISBN -13:978-3527331239.
6	Protein Structure Prediction: Methods and Protocols by Webster, David (Southern Cross Molecular Ltd., Bath, UK). (2000). Humana Press. ISBN-10:0896036375, ISBN-13:978-0896036376.
7	Principles of Protein X-Ray Crystallography [3rd ed.] by Jan Drenth (2007). Springer New York. ISBN: 978-0-387-33746-3.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U	Α	N	E	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements %weightage							
CO-1	At the end of this course Students will be acquiring knowledge about	25						
	different tools and methods used in proteomic study.							
CO-2	Students will be able to understand the sources of protein, Industrial 25							
	and medical application of proteins,							
CO-3	Students will learn different expression of proteins for large scale 25							
	purifications.							
CO-4	Students will be able to execute protein engineering strategy.	25						

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: VIII

Course Code: To be given by the University

Course Title: Environment Policy and Legislation

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Learn legal structure of India and fundamentals of environmental legislation and policy making.
- **b)** Understand the environmental performance including compliance with environmental legislation.
- **c)** Execute environmental policies and practices and raise awareness about the emerging environmental issues.
- **d)** Know various acts, laws and rules related to air, water, environment and wastes in India.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	International Law and Environmental Protection: Fundamental Principles of	15
	International Environmental Law. United Nations Conference on Human	
	Environment, 1972 (Stockholm Conference) - Aims and Objectives of the	
	Conference, Stockholm Declaration. UNEP- Vienna Convention & Montreal	
	Protocol, World Charter for Nature, 1982. WCED – The Brundtland Commission,	
	Brundtland Report 1987. United Nations Conference on Environment and	
	Development (UNCED/Earth Summit) – Aims and Objectives of Conference, Rio	
	Declaration 1992, Agenda 21, Convention on Biological Diversity. Earth Summit	
	Plus Five - Kyoto Protocol, 1997; Millennium Development Goals. Johannesburg	
	Conference 2002 (WSSD) - Johannesburg Declaration & Major Outcomes.	

2	History and Development of Environmental Law in India: Environmental	15				
	Protection in Ancient Indian Tradition and Culture - Protection of Environment in					
	Ancient India and During Medieval Period. Protection of Environment during					
	British Period - Major Legislations. Protection of Environment during Post	ı				
	Independence Period - Pitambar Pant Committee, Tiwari Committee, NCEP,					
	Department of Environment, MOEF Guidelines and Notifications, Appellate					
	Authority Act, Other related Notifications.	1				
3	Protection of Environment under the Indian Constitution: Introduction -	15				
	Indirect Provisions, International Obligations, 42 nd Constitution Amendment Act,					
	1976. Directive Principles of State Policy - Fundamental Duties. Development of	ı				
	Fundamental Right to Environment - Judicial Role, Expansion of Locus Standi, PIL,	ı				
	Constitutional Remedy for Protection of Environment, Dynamic Interpretation of	ı				
	Article 21, 14 & 19 of the Constitution. Right to Wholesome Environment – Right					
	to Clean and Pollution-free Environment, Right to Sweet Water. Incorporation of					
	International Principles under Indian Constitution – Sustainable Development -					
	Precautionary and Polluter Pays Principles, Absolute and Strict Liability.	ı				
4	Protection of Water, Air and Environment in India:	15				
	EP Act 1986, Air (Prevention and Control of pollution) Act, Water (Prevention and	ı				
	Control of pollution) Act, Mines and Mineral Act, Factories Act, Pesticides Act,	ı				
	Indian Forest Act, Wildlife Act, Ancient Monuments and Archaeological Sites and	1				
	Remains Act, Hazardous Waste Management and Handling Rules / Biomedical					
	Rules / Solid Waste Management Rules, Environment Tribunal Act, Climate change	1				
	Protocols and Conventions	,				

1	Environmental Law by S.C. Shastri. (2012). 4th Edition, Eastern Book Company, Lucknow.
	ISBN-13-5028-480-7.
2	Textbook on Environmental Law by Maheshwara Swamy. (2008). 2nd Edition, Asia Law
	House, Hyderabad. ISBN-9789392135415.
3	Environmental Law and Policy in India by Shyam Divan and Armin Rosencranz. (2005).
	Oxford University Press, New Delhi. ISBN-513-978-0-19-566-173-6.
4	Environmental Law by Amod S. Tilak. (2009). 1stEdition, Snow White Publication, Mumbai.
	ISBN-9788181593696.
5	Environmental Law in India by Leelakrishnan P. (2005). 2nd Edition, Lexis Nexis, New Delhi.
	ISBN-9789386515872

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	Distribution of Theory Marks in %					R : Remembering; U : Understanding; A : Applying;
R	U	A	N	E	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage					
CO-1	At the end of this course, the student should be clear about legal	At the end of this course, the student should be clear about legal 25					
	structure of India and fundamentals of environmental legislation and						
	policy making.						
CO-2	The students will understand the environmental performance including	25					
	compliance with environmental legislation.						
CO-3	The students will learn about the implementation of environmental 25						
	policies and practices and raise awareness about the emerging						
	environmental issues.						
CO-4	The students will study about various acts, laws and rules related to air,	25					
	water, environment and wastes in India.						

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Drug Design and Development

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Understand the approaches to find drug targets.
- **b)** Know the protein and receptors as drug targets.
- c) Learn drug design and optimizing homology model.
- **d)** Recognize the preclinical and clinical study, regulatory affairs.

Teaching & Examination Scheme:

1 caching & Examination Scheme:								
Contact hours per week			Course	Exam	ination Ma	arks (Maximum / Passing)		
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours				
1	Drug and Drug Classification, Ideal characteristics of drug, General mechanism of	15				
	drug action, Finding a target, Choose a disease, finding a target, Identify a bioassay,					
	Find a lead compound, Identify the pharmacophore, determine the structure of the					
	lead compound					

2	Protein as - drug target	15					
	Protein – drug interaction (viz. Intramolecular bonding forces), Drug action at						
	protein, Peptide or protein as drugs, Monoclonal antibodies in medicinal chemistry,						
	Enzymes as – drug target : Enzymes as catalyst, The active sites of an enzymes,						
	Substrate binding at active sites, The catalytic role of enzymes, Regulations of						
	enzymes, Isoenzymes, Enzymes inhibitors and Enzymes kinetics and case study.						
	Receptor as - drug target:						
	Introduction to receptor & Receptors role, Neurotransmitter and hormones,						
	Change in the shape, Design of agonist, antagonist						
3	Drug Design and optimizing homology modelling	15					
	Identify structure – activity relationship (SARs) Binding role of various functional						
	groups, Strategies in drug design, Improve absorption, Making drugs less resistant						
	to drug metabolism, Targeting drugs, Reducing toxicity, Prodrug, Drug alliances,						
	Endogenous compounds as a drug.						
	QSAR, combinatorial synthesis, Limitations and testing for activity.						
4	Drug Development	15					
	Preclinical trials-Toxicity testing, Drug metabolism studies, Pharmacology,						
	formulation and Stability test. Clinical Trials – Phase-I, Phase-II, Phase-III, Phase-IV						
	studies, Ethical issues						
	Patenting and Regulatory affairs – Patents, Regulartory Affair, Regulatory process,						
	fast tracking and orphan drugs.						
	Chemical and process development - Chemical development: Stages in chemical						
	development. Process development-process development.						

1	An Introduction to Medicinal Chemistry by G. L. Patrick (2013). 3rdEd., Oxford University						
	Press. ISBN 978-0-19-969739-7.						
2	Wilson and Gisvold's Textbooks of Organic Medicinal and pharmaceutical chemistry by John						
	H. Block and John M. Beale Jr. (2012). 12 th edition. ISBN 978-0-7817-7929-6.						
3	Foye's Principles of Medicinal Chemistry by David A. Williams and Thomas L. Lenke						
	(2012).7 th edition. ISBN 13-978-1451175721.						
4	Medicinal chemistry - A biochemical Approach by T. Nogradyedey (2005).3rdedition -						
	Oxford University Press, New York, Oxford ISBN 13 978-0-19510455-4; 978-0-19-510456-1.						
5	The Organic Chemistry of Drug design and drug action by R. B. Silverman (2014).2ndedition						
	Acedemic press. ISBN -13 978-0123820303.						
6	Burger's Medicinal Chemistry & drug Discovery edited by Manfred E. Wolff (1997).5th						
	edition, Volume – 1, 2,3,4,5 –, John – Wiley & Sons, New York, ISBN 0-417-27090-3.						

Sup	Supplementary learning Material:						
1	https://nptel.ac.in/						
2	https://swayam.gov.in/						
3	https://diksha.gov.in/						
4	https://epathshala.nic.in/						
5	https://www.coursera.org/career-academy/?trk_ref=globalnav						

Direct Classroom teaching

Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating			
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have clear understanding of	25
	different approaches to find drug targets.	
CO-2	Students will understand about the protein and receptors as drug	25
	targets.	
CO-3	The students will learn about the drug design and optimizing homology	25
	modelling and to identify the structures of molecule.	
CO-4	Students will understand about the preclinical and clinical study and	25
	regulatory affairs.	

Curriculum Revision:			
Version:	1.0		
Drafted on (Month-Year):	January 2023		
Last Reviewed on (Month-Year):	February 2023		
Next Review on (Month-Year):	April 2025		

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Material Balance, Mass Transfer and Transport Process

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Know the problems involved in reaction stoichiometry.
- **b)** Solve problems involving mass transfer due to diffusion, chemical reaction, and convection.
- c) Understand th size of basic heat and mass transfer equipment.
- **d)** Apply engineering judgment including an appreciation of cost and safety.
- **e)** Identify the mass transfer problems involving biological and environmental systems.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course Examination Man			rks (Maximum / Passing)		
Locturo	Tutorial	Practical	Credits	The	eory	J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours					
1	Introduction to Biochemical engineering: Unit operation, Unit process, Process						
	classification, Basic processing function, mode of process operation, process						
	modeling, absorption, distillation, extraction, drying and evaporation.						
	Humidification operation, transport phenomenon, mass, heat, material transfer and						
	its application in biochemical engineering.						
2	Stoichiometric Calculations: General terminology, Stoichiometric coefficient,						
	stoichiometric ration, Limiting reagent and excess yield based on feed and reactant						
	consume medium formulation and yield factor, yield factor, RQ and role of RQ in						
	calculations. Degree of reduction, effect of temperature, pH and Oxygen,						
	Mathematical problems.						

3	Material balances: Introduction, General strategy for solving material balance, Type of Material balance problems, basis of material balances, material balances of steady state and non steady state processes for single unit and multi unit. Balance on continuous steady state process, Integral process. Recycle, bypass purge and industrial application of material balances. Mass transfer, mass transfer coefficient and its calculations.	15
4	Energy balances and heat Transfer: Definition, forms of energy, Transfer of energy, First law of Thermodynamics, Kinetic energy equation, Energy balance in open, close and reactive system Transport processes, Heat Transfer: Introduction: Mechanisms and applications of heat transfer-mode of Heat transfer and heat transfer-conduction, convection and radiation. Steady state heat transfer fundamentals: Heat transfer in heat exchangers and fermenter coils, jacketed vessels. Principles of heat transfer underlying condensation and evaporation. Unsteady state heat transfer fundamentals. Mathematical problems	15

	01 01100 2 0 01101
1	Basic Principles & Calculations in Chemical Engineering by D. M. Himmelblau and James B.
	Riggs (2012). 8th Ed., ISBN-10: 0-13-234660-5.
2	Stoichiometry by B. I. Bhatt & Thakore (2010). Tata McGraw Hill Book Company, 5th Eds.
	ISBN, 1283188570, 9781283188579.
3	Bioprocess Engineering Principles, Second Edition by Pauline M. Doran (2013). Academic
	Press. ISBN-012220851X, 9780122208515.
4	Process Calculations by V Venkataramani and N. Anantharaman (2011). Publisher, PHI
	Learning Pvt. Ltd. ISBN-8120341996, 9788120341999.
5	Chemical Process Principles by O. A. Hougen, K.M. Watson, R.A. Ragatz (2018). 2nd edition,
	Indian print, CBS Publishers, 2 nd Ed., ISBN-13 979-8123909539.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					
5	https://www.coursera.org/career-academy/?trk_ref=globalnav					

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage					
CO-1	The student will learn about process functions, mode of operation and	25					
	transport phenomenon.						
CO-2	The student will learn about stoichiometric calculations, media	25					
	formulation and yield factor.						
CO-3	The student will learn about the material balance problems, single and						
	multi-unit state processes.						
CO-4	The student will learn about the kinetic energy equations, heat transfer	25					
	mode and its exchangers.						

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Metabolic Engineering

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand the metabolic regulation and its modification, enzyme kinetics.
- **b)** Know the metabolic flux balance analysis.
- **c)** Identify the metabolic engineering strategies for production of PHA, solvents.
- **d)** Recognize metabolic engineering for substrate utilization, reconstruction of metabolic network.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	The	Theory		J/V/P*	
Lecture	e Tutoriai	Ilai Piacticai		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents						
1	Overview of metabolism and its regulation; Introduction to Metabolism and						
	Metabolic Engineering, Enzyme Kinetics, and inhibition kinetics, Regulation of						
	Metabolic pathways and Networks						
2	Metabolic flux balance analysis: Determine, Underdetermine and over-	15					
	determined systems, Metabolic Control analysis, Engineering of the central						
	metabolism of <i>Escherichia coli</i> , Metabolic engineering of <i>Escherichia coli</i> for the						
	production of aromatic compounds,						
3	Metabolic engineering strategies for the production of polyhydroxyalkanoates, a						
	family of biodegradable polymers, amino acid production (lysine, threonine and						
	tryptphan), Metabolic engineering of <i>Clostridium acetobutylicum</i> for solvent						
	production (acetone)						

4	Metabolic engineering for biodegradation of recalcitrant pollutants, Functional							
	genomics: microarrays, proteomics and metabolomics, Bioinformatics for							
	reconstruction of metabolic networks, Systems biology frameworks for metabolic							
	engineering.							

Metabolic Engineering: Concepts and Applications by Jens Nielsen, Gregory Stephanopoulos,					
Sang Yup Lee (2021). Published by Wiley Online Library, Volume 13b, 1st Edition.					
ISBN: 9783527823468.					
Metabolic Engineering by Ralph Becker (2016). Published by Syrawood Publishing House,					
1st Edition. ISBN: 9781682861530.					
Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production by					
Kazayuki Shimizu (2017). Published by CRC Press, 1st Edition. ISBN: 9781498768375.					
Metabolic Engineering: 73 (Advances in Biochemical Engineering/Biotechnology) by Jens					
Nielsen; published (2010). Springer, 2 nd Edition. ISBN: 978-3642075346.					
Applied Metabolic Engineering: Theory and Practical Applications" by Mario Jolicoeur,					
Michel Perrier, Olivier Henry, Maria Klapa, Mathieu Cloutier (2010). Published by Wiley-					
Blackwell, 1st Edition. ISBN: 978-0470595404.					
Metabolic Engineering by Sang Yup Lee, E. Terry Papoutsakis (1999). Published by CRC					

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Pedagogy:

Direct Classroom teaching

Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Press. 1st Edition. ISBN 9780824773908.

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage			
CO-1	At the end of this course, the student should have knowledge of	25			
	metabolic regulation and its modification, enzyme kinetics				
CO-2	The students will learn about the metabolic flux balance analysis	25			
CO-3	The students will learn about the metabolic engineering strategies for production of PHA, solvents.				
CO-4	The students will learn about the metabolic engineering of yeast for substrate utilization, bioinformatics for reconstruction of metabolic network	25			

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	January 2023				
Last Reviewed on (Month-Year):	February 2023				
Next Review on (Month-Year):	April 2025				

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Lab – I (Drug Design and Development and Material Balance, Mass

Transfer & Transport Process)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Pass				sing)
Lasturas	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture				Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Drug Design and Development

	1 8 8 1
1	Retrieval of structure for PBP and Ramchandran plot.
2	Homology modelling.
3	Docking
4	Q SAR of selective compound
5	Estimation of commercial drugs using spectroscopic techniques.
6	Comparative study of antibacterial activity of natural product versus commercial drugs

List of Practicals / Tutorials: Material Balance, Mass Transfer & Transport Process

1	Determination of K _L a by sulphite oxidation method.
2	Ethanol production, distillation and estimation for percentage product yield estimation.
3	Citric acid fermentation and its estimation for percentage product yield estimation.
4	Fermentation time profile with respect to Glucose consumption and biomass formation by
	Yeast / Bacteria.
5	Determination of purity of fermentation products on the basis of its physical properties
	(Boiling point/Melting point, Density/Specific gravity, Viscosity etc.)

1	Homology modelling: tutorial https://youtu.be/Zb98mmfnsvg
2	Molecular Docking Tutorial: AUTODOCK VINA - PART 1
3	Molecular Docking with all new AutoDock Vina 1.2: https://youtu.be/TpofopDIIy4

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					
5	https://www.coursera.org/career-academy/?trk_ref=globalnav					

Pedagogy:

Hands on training
Discussion with students
Demonstration

Model Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U	A N E C		С	N: Analyzing; E: Evaluating; C: Creating	
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Lab – II (Metabolic Engineering and Elective Course)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Lecture Tutoria		Drogtigal	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Metabolic Engineering (Core)

1	Determination of K_m and V_{max} of enzyme
2	Screening and isolation of PHA producing microorganisms
3	Optimization of conditions for PHA production
4	Understanding of Flux balance analysis using appropriate examples
5	Reconstruction of metabolic network from genome annotation using bioinformatics tools
6	Flux balance analysis to redistribute flux using bioinformatics tools

List of Practicals / Tutorials: Environmental Engineering (Elective)

1	Determination of kinetic Coefficients in batch wastewater treatment process.
2	Checking of aerobic decomposition of industrial waste.
3	Checking of anaerobic decomposition of industrial waste.
4	Determination of phenol.
5	Treatability studies of wastewater.
	A. Coagulation-Flocculation Jar Test of Water/Effluents.
	B. Sludge Volume Index (SVI).
	C. Food/Microorganisms (F/M) Ratio.
6	Determination of volatile fatty acids (VFAs).
7	Determination of turbidity in water/wastewater samples.

1	Synthesis of magnetic nanoparticles by coprecipitation method.
2	Biosynthesis of nanoparticles by microorganisms.
3	Preparation of quantum dots of CdS nanoparticles.
4	Activity profile of metal nanoparticles in terms of antimicrobial activity
5	Liposome synthesis and delivery of proteins in the field of nanomedicine.

List of Practicals / Tutorials: Cancer Genetics (Elective)

1	Preparation of Culture Media for Chromosomes analysis.						
2	Human Blood Lymphocyte Culture						
3	Genetic diagnosis of cancer by PCR						
4	Visit to medical hospitals and report submission						

List of Practicals / Tutorials: Validation, Documentation and cGMP (Elective)

1	Working knowledge, calibration of Laboratory equipment like pipette, burette,									
	thermometer etc.									
2	Validation of the Modern analytical Instruments like UV spectrometer, IR-									
	spectrophotometer, HPLC, etc.									
3	Validation of sterilization equipments e.g. Hot air oven, Autoclave.									
4	Validation of Analytical procedures									
	Analysis of pharmaceutical and cosmetic raw materials with the help of instruments.									

Reference Books:

1101	or ender Books.							
1	Standard Methods for the Examination of Water and Wastewater by Baird, Rodger, and							
	Laura. Bridgewater 2017. Washington, D.C. American Public Health Association.							
2	CPCB (2008) Guidelines for water quality monitoring. Parivesh Bhawan: Central Pollution							
	Control Board, New Delhi. MINARS/27/2007-08.							
3	Wastewater engineering: Treatment and resource recovery by Metcalf & Eddy Inc.,							
	Tchobanoglous G, Burton FL, Tsuchihashi R, & Stensel HD (2017). 5theds. McGraw-Hill							
	Professional. ISBN: 10- 9780070495395, ISBN: 13- 978-0070495395							
4	Constitutional AnalysisbyD. E. Rooney (1992). Oxford University Press. New York. ISBN-10							
	: 0199632871, ISBN-13 0199632879-978 :							
5	Experimental Microbiology by Patel. R.J., Patel. K. R. (2008). Vol-II, Aditya Publications,							
	Ahmedabad, India. ISBN: Not given.							
6	Experiments in Applied Microbiology by Samuel Singer (2001). Academic Press.							
	ISBN 10: 0126459606 ISBN 13: 9780126459609.							

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Chart

Hands on training
Discussion with students
Demonstration
Model

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U	Α	N	E C		N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Environmental Engineering

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand fundamentals of biological treatment.
- **b)** Know Principle of physical and chemical treatment methods.
- c) Learn advanced wastewater treatment.
- **d)** Explain design of wastewater treatment plants.

Teaching & Examination Scheme:

Contac	Contact hours per week			Contact hours per week			Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Logtuno	Tutorial	torial Practical	Credits	Theory		J/V/P*		Total			
Lecture	Tutoriai			Internal	External	Internal	External	Total			
3	1		4	40/16	60/24			100/40			

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours								
1	Fundamentals of Biological Treatment: Bacterial growth and energetic, Microbial									
	Growth Kinetics: Rate of substrate utilization-Active Biomass-Net and Observed									
	Biomass, Calculation of Kinetic coefficients (k , K_S , Y and K_d), Modelling suspended									
	growth treatment processes: biomass balance, Aerobic biological oxidation,									
	Biological nitrification, Biological denitrification, Biological Phosphorus Removal.									
2	Physical unit operations: Screening, Flow equalization, Grit removal,	15								
	Sedimentation, Membrane filtration processes: Reverse osmosis, Nano filtration,									
	ultra filtration, micro filtration and electrodialysis. Chemical unit processes:									
	Chemical coagulation, Chemical precipitation, Chemical oxidation and Chemical									
	neutralization. Chemical storage, feeding, piping and control system. Chemical									
	precipitation for phosphorus removal.									

3	Advanced wastewater treatment: Technologies used for advanced treatment,	15
	Removal of organic, inorganic, biological constituents, depth filtration, surface	
	filtration, adsorption, ion-exchange, advanced oxidation processes, Multi Effect	
	Evaporator (need for MEE, design details and principle of MEE, process and	
	operation handling and applications), Disinfection processes, Disinfection with	
	chlorine dioxide, ozone and UV radiation. Dechlorination: Need for dechlorination,	
	Dechlorination with chemicals. Advanced oxidation processes.	
4	Treatment and disposal of solids: Solids sources and characteristics. Disposal of	15
	solids, Composting: Process microbiology, Thickening, Dewatering: Centrifugation,	
	Belt-filter press, Filter presses, Sludge drying beds and lagoons. Heat Drying: Heat	
	transfer methods: process description. Conditioning: Chemical conditioning.	

1	Wastewater Engineering, Treatment and Reuse by Metcalf and Eddy (2003). Tata McGraw								
	Hill, New Delhi (2003).ISBN-10:007041677X.								
2	Water works Engineering – Planning, Design and Operation by Qasim, S.R., Motley, E.M. and								
	Zhu.G. (16 April 2000). Prentice Hall, New Delhi. ISBN-10:8120321537.								
3	Handbook of Environmental Engineering Calculations by Lee, C.C. and Shundar Lin								
	(2McGraw-Hill Education.ISBN-10:0070381836.								
4	Water Treatment Unit Processes – Physical and Chemicalby Hendricks (9 November 2010).								
	D. CRC Press Inc; 1st edition. ISBN-10:9781420061918, ISBN-13:978-1420061918.								

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	tributio	on of T	heory M	larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U A N E C			E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage		
CO-1	At the end of this course, the student will have knowledge about growth 25			
	kinetics, kinetic coefficients and treatment processes			
CO-2	The students will learn about the principle of physical and chemical	25		
	treatment methods			
CO-3	The students will learn about the advanced waste water treatment	25		
	technologies			
CO-4	The students will learn about the treatment and disposal of solid wastes	25		

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	January 2023				
Last Reviewed on (Month-Year):	February 2023				
Next Review on (Month-Year):	April 2025				

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Nanobiotechnology & Applications

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand nanoworld, nanomaterials, their properties, top down and bottom-up approaches.
- **b)** Learn preparation, characterization, and properties of nanostructures materials.
- c) Recognize biomolecules as nanostructures and their applications in nanotechnology.

d) Execute biofunctionalization of nanomaterials.

Teaching & Examination Scheme:

Contact hours per week			Course	rse Examination Marks (Maximum / Passing			sing)	
Lecture Tutorial	Tutorial	Dunatical	Credits	The	Theory J		//P*	Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Introduction to Nanoworld, Nanoscience and Nanotechnology, Nanomaterials	15
	(Properties of materials & nanomaterials, role of size in nanomaterials),	
	Nanoparticles, Nanowire. Top down and bottom up approach for building	
	Nanomaterial. Importance of nano materials in biotechnology.	
2	Introductory overview, preparation, characterization, and properties of	15
	nanostructured materials (e.g., metal nanoparticle, quantum dot, carbon	
	nanotube, polymeric nanocarrier, and silica nanoparticle); Chemical Routes for	
	Synthesis of Nanomaterials: Chemical precipitation and co-precipitation; Metal	
	nanocrystals by reduction, Sol-gel synthesis. Fabrication of Nanomaterials by	
	Physical Methods: -Inertgas condensation, Plasma arc technique, Laser pyrolysis,	
	Ball Milling, Chemical vapor deposition and electro-deposition.	

3	Nanobiotechnology: Introduction, Biomolecules as nanostructures and their	15
	applications in nanotechnology viz. Biosensors, separation of cells and cell	
	organelles, drug delivery, gene therapy etc., Nanosensors-Miniaturization of	
	Biosensors, Nanomaterial Based Biosensors. Effect of Biosensor in biological and	
	physicochemical techniques, Applications of nanobiotechnology in early medical	
	diagnostics, drug targeting, drug delivery, nanosurgery and other biomedical field.	
4	Structural Principles of Nanobiotechnology Construction of Nanomachines, The	15
	Raw Materials: Biomolecular Structure and Stability, Protein Folding, Self-	
	Assembly, Self-organization, Molecular Recognition. Flexibility poses great	
	challenges for the design of nanobiomachine, DNA nanostructures DNA Templated	
	Electronics, Sequence –specific molecular lithography, Single Biomolecule	
	Manipulation for Bioelectronics, DNA as a semiconductor, Applications in implants,	
	prostheses, and tissue engineering; toxicity, health, and environmental issues	

1	Nanobiotechnology: Concepts, Applications and Perspectives by Niemeyer CM and Mirkin CA (2004). John Wiley and Sons, 1st Edition. ISBN-9783527605910.
2	Biomedical Nanotechnology by Malsch NH (2005). Taylor and Francis, 1stEdition. ISBN-9780429132995.
3	Nanobiotechnology in Molecular Diagnostics: Current Techniques and Applications by Jain KK (2006). Horizon Bioscience, 1st Edition. ISBN-9781904933175.
4	Nanobiotechnology Protocols by Humana Rosanthal SJ and Wright DW (April 27, 2005). 5 th edition. ISBN-10:1588292762, ISBN-13:978-1588292766.
5	Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology by Nalwa HS (May 25, 2006). American Scientific Publishers, ISBN-10:1588830330, ISBN-13:978-1588830333.
6	Biological Nanostructures and Applications of Nanostructures in Biology: Electrical, Mechanical, and Optical Properties by Stroscio M and Dutta M(3 October 2013). Springer. ISBN-10:1475779461. ISBN-13:978-1475779462.

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R: Remembering; U: Understanding; A: Applying;
R	U	A	N	E	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to know about	25
	nanoworld, nanomaterials, their properties, top down and bottom up	
	approaches	
CO-2	The students will learn about the preparation, characterization and	25
	properties of nanostructures materials with applications and recent	
	advancement	
CO-3	The students will learn about the biomolecules as nanostructures and	25
	their applications in nanotechnology and sensor based applications	
CO-4	The students will learn about the biofunctionalization of nanomaterials,	25
	application of nanotechnology in biological and medical science.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Cancer Genetics

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand various types, properties, and progression of cancers.
- b) Provide information about various genetics and epigenetics factors causing cancers.
- c) Focus on tumour markers, Tumour viruses and Chromosomal defects in cancers.
- **d)** Learn selected familial cancers occurring in populations.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passi			sing)	
Lecture	Tutouiol	Duantinal	Credits	The	eory	J/V	/P*	Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours				
1	Introduction to cancer, Characteristics of cancer cells, types of cancers, Cell	15				
	transformation and tumourigenesis. Molecular basis of cancer cell behavior, Cancer					
	Classification: TNM system, Types of staging					
	Cancer and environment: physical, chemical and biological carcinogens. methods to					
	study cancer critical genes.					
2	Oncogenes, Tumour suppressor genes, DNA repair genes, mutations causing	15				
	genetic instability: mechanism of genetic destabilization, Epigenetic modifications,					
	telomerase activity, centrosome malfunction					
	Chromosomal aberrations in neoplasia					

3	Apoptosis Necrosis and autophagy and cancer	15		
	Genetic heterogeneity and clonal evolution			
	Tumour specific markers			
	Cancer stem cells			
	Overview of Tumor viruses and Cervical cancer			
4	Familial cancers: Retinoblastoma, Wilms' tumour, Prostate cancer, Colorectal	15		
	cancer, Breast cancer			
	Cancer Genomics: Cancer Genome project, Genomic landscape of Cancer, cancer			
	genomics and drug resistance			
	Cancer Treatment: Present and future			

1	Molecular Biology of the Cell by Bruce Alberts. A, Johnson, J. Lewis Garland Science; 6th
	edition (November 19, 2014). ISBN-10:0815345240, ISBN-13:978-0815345244.
2	The biology of cancer by Robert A. Weinberg (2013), 2ndedition, W. W. Norton & Company,
	Garland Science, ISBN-13 978-0815342205.
3	Lewin's Genes XII, by Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick (2017),
	ISBN-978-1284104493.
4	Cancer: Principles and Practice of Oncology Primer of Molecular Biology in Cancer by
	Vincent T. DeVita (2021). 3 rd Edition. LWW NP 9781975149116.
5	Molecular Cell Biology by Anold Berk, Chris A. Kaiser, Harvey Lodish, Angelika Amon, Hidde
	Ploegh, Anthony Bretscher, Monty Krieger, Kelsey C. Martin(1 April 2016). W H Freeman;
	8th edition. ISBN-10:1464183392, ISBN-13:978-1464183393.
6	The Cell: A molecular approach by G. M. Cooper and R.E. Hausman (February 1, 2013).
	6 th edition, Sinauer Associates, Inc. 6 th edition. ISBN-10:9780878939640, ISBN-13:978-0878939640.

Supj	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Page **69** of **82**

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to understand various	25
	types, properties and progression of cancers.	
CO-2	The students will learn about the various genetics and epigenetics	25
	factors causing cancers.	
CO-3	The students will learn about the tumor markers, tumor viruses and	25
	cancer stem cells.	
CO-4	Students will understand selected familial cancers occurring in	25
	populations.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: IX

Course Code: To be given by the University

Course Title: Validation, Documentation and cGMP

Course Group: ELECTIVE

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand concepts of quality, quality management and its implementation.
- **b)** Learn regulatory guidance and guidelines like ICH, WHO and other relevant documents.
- c) Identify good Laboratory Practices, SOPs, handling of deviation.
- **d)** Execute documentation and relevant process related documents.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Page			sing)	
Lagtura	Tutorial	Practical	Credits	The	eory	J/V/P*		Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	Building and facilities: Location, design, plant layout, maintenance and sanitation,	15
	environmental controls.	
	Utilities and services: air/gas, air handling and HVAC systems, sterile and non-	
	sterile area, aseptic process and sterilization methods, Water: purified, distilled	
	and sterile.	
2	Concept and philosophy of cGMP in manufacturing, processing, packaging and	15
	holding.	
	Organization and personal responsibilities, qualification, experience, training,	
	personal hygiene and clothing.	
3	Introduction, definition of validation, planning of validation – the consultant, task	15
	force, dedicated group, process characterization, validation protocol.	

4	Prerequisite of validation- design qualification (DQ), Installation qualification (IQ),	15
	operational qualification (OQ) and performance qualification (PQ). Validation	
	options, analytical methods validation, cleaning validation and revalidation.	
	Complaints and product recall.	

1	Pharmaceutical Process Validation by Robert A. Nash and Alfred H. Wachter (1993).3rd
	Edition, Marcel Dekker Inc. ISBN: 0-8247-0838-5.
2	Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control: 52
	(Drugs and the Pharmaceutical Sciences) by Sidney H. Willig, Stoker. Marcel Dekker Inc; 3rd
	edition (1 December 1991) ISBN 10: 0824785940, ISBN 13:978-0824785949.
3	Encyclopedia by pharmaceutical technology by James Swarbrick, James C. Boylan (2002).
	Marcel Dekker Inc. ISBN: 9780824728250, 9780824728229, 9780824728236.
4	How to practice GMPs by Sharma P. P. (2015) 7th Ed., Vandana Publication. ISBN:
	8190595792.
5	The drugs and cosmetics act and rules, ministry of health and family welfare (Department of
	Health), (As amended up to the 31st December 2016).
6	cGMP Current Good Manufacturing Practices for Pharmaceuticals by Manohar A. Potdar,
	Ramkumar Dubey (2022). PharmaMed Press / BSP Books. ISBN: 9789387593060.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					
5	https://www.coursera.org/career-academy/?trk_ref=globalnav					

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

							- ()) ())
Distribution of Theory Marks in %						n %	R : Remembering; U : Understanding; A : Applying;
	R	U	Α	N	E	C	N: Analyzing; E: Evaluating; C: Creating
Ī	25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should be able to understand the	25
	concepts of quality, quality management and its implementation	
CO-2	The students will learn about the regulatory guidance's and guidelines	25
	like ICH, WHO and other relevant documents	
CO-3	The students will learn about the Good Laboratory Practices, SOPs,	25
	handling of deviation	
CO-4	The students will learn about the documentation and relevant process	25
	related documents	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: X

Course Code: To be Given by University

Course Title: Biosafety, Bioethics & IPR

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- a) Learn about the ethical issues in biomedical research and the guidelines to be followed.
- **b)** Gather information about various biosafety issues in biotechnological research and guidelines to be followed.
- **c)** Get exposure about types of IPR and patent system in India.
- d) Know the role of WTO, TRIPS. Biodiversity and Indigenous knowledge.

Teaching & Examination Scheme:

Contac	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Lecture	Tutorial	Practical	Credits	The	eory	J/V	/P*	Total
				Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours				
1	Bioethics	15				
	Introduction, ethical conflicts in biological sciences - interference with nature,					
	bioethics in health care - patient confidentiality, informed consent, euthanasia,					
	prenatal diagnosis, genetic screening, gene therapy, transplantation. Bioethics in					
	research - cloning and stem cell research, Human and animal experimentation,					
	Agricultural biotechnology - Genetically engineered food, environmental risk,					
	labelling and public opinion.					
	Overview of ICMR guidelines for research on human subjects					
	Blue Cross in India, Green Peace					

2	Biosafety	15						
	Biosafety & Biosecurity - introduction; historical background; introduction to							
	biological safety cabinets; primary & secondary containment for biohazards;							
	biosafety levels; GRAS organisms; definition of GMOs &LMOs.							
	Principles of safety assessment of transgenic plants - sequential steps in risk							
	assessment; concepts of familiarity and substantial equivalence; risk -							
	environmental risk assessment and food and feed safety assessment;							
	Risk Assessment: risk characterization and development of analysis plan; risk							
	assessment of transgenic crops vs CIS genic plants, Plants or products derived from							
	RNAi, gene editing tools							
3	Introduction to IPR	15						
	Introduction to intellectual property; types of IP: patents, trademarks, copyright &							
	related rights, industrial design, traditional knowledge, geographical indications,							
	Types of patent applications, Infringement, protection of new GMOs; International							
	framework for the protection of IP, PCT; Introduction to Paris Convention, GATT,							
	WTO, WIPO, and TRIPS; plant variety protection and farmers rights act; concept of							
	'prior art': invention in context of "prior art".							
	Patent databases - country-wise patent searches (USPTO, EPO, India)							
4	National and International Regulations	15						
	International regulations - Cartagena protocol, OECD consensus documents &							
	Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents,							
	regulatory framework - RCGM, GEAC, RDAC, IBSC and other regulatory bodies;							
	Overview of Biosafety guidelines in India; category of rDNA experiments; field							
	trials – biosafety research trials – standard operating procedures; GM labelling –							
	Food Safety & Standards Authority of India (FSSAI).							

1	Bioethics and Biosafety by M. K. Satish (2011). IK International, (P) Ltd, New Delhi. ISBN: :
	9788190675703.
2	Intellectual Property Rights-In the WTO and developing countries by Jayshree Watal (2003).
	Oxford University Press. ISBN-13: 978-0195661705, ISBN-10:0195661702.
3	Intellectual property rights by Prabudha Ganguly (2001). Tata McGraw Hill. ISBN-10:
	0074638602.
4	Biotechnology and Safety Assessment by Fleming, D.A., Hunt, D.L., (2000). 3rd Eds. Academic
	press. ISBN- 1555811804, 9781555811808.
5	Biotechnology and safety Assessment by Thomas, J.A., Fuch, R.L. (2002). 3rd Eds. Academic
	press. ISBN-10:0126887217, ISBN-13:9780126887211.

Sup	Supplementary learning Material:							
1	http://www.envfor.nic.in/divisions/csurv/geac/annex-5.pdf							
2	https://dbtindia.gov.in. > guidelines-biosafety							
3	http://www.igmoris.nic.in/guidelines1.asp							

4	http://www.nbaindia.org
5	http://www.wipo.int
6	https://dpiit.gov.in/
	National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce,
	GoI
7	http://www.ipindia.nic.in/
	Office of the Controller General of Patents, Design & Trademarks; Department of Industrial
	Policy & Promotion; Ministry of Commerce & Industry; Government of India.
8	Problem Formulation in the Environmental Risk Assessment for Genetically Modified
	Plants by Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu, F.
	(2009). Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9
9	An Overview of General Features of Risk Assessments of Genetically Modified Crops by
	Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). Euphytica, 164(3), 853-880.
	doi:10.1007/s10681-007-9643-8
10	National Biodiversity Authority.
11	Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of
	Science and Technology, Govt. of India. Retrieved from
12	World Trade Organisation. http://www.wto.org
13	Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants. 2008
14	Guidelines and Standard Operating Procedures for Confined Field Trials of Regulated
	Genetically Engineered Plants. 2008.

Pedagogy:

Direct Classroom teaching

Audiovisual

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	tributio	on of T	heory M	larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have the knowledge about the	25
	ethical issues in biomedical research, modern biotechnology and the	
	guidelines to be followed	
CO-2	Students will gain information about various biosafety issues in	25
	biotechnological research and guidelines to be followed	

CO-3	Students will be familiar with types of IPR; patent system in India and international patent system.	25
CO-4	Students will be able to elaborate on the role of WTO, TRIPS. Learn about the Biodiversity and Indigenous knowledge, national and international regulations in biotechnology.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: X

Course Code: To be Given by University

Course Title: Bioinformatics

Course Group: CORE

Course Objectives:

The objectives of this course are to enable students to...

- **a)** Understand various databases and their uses. Concepts of scoring matrices and sequence alignment.
- **b)** Recognize various methods for prediction of gene structure in Prokaryotes and Eukaryotes, methods for complete transcript cataloguing and gene discovery.
- **c)** Learn concepts and tools for genomics and comparative genomics, phylogenetic analysis by various types of trees and methods.
- **d)** Identify tools for proteomics, different algorithms for prediction of secondary & 3D structure of protein and protein folding.

Teaching & Examination Scheme:

Contac	ct hours pe	er week	Course	Examination Marks (Maximum / Passing				
Logtuno	Tutorial	Dragtical Credits		Theory		J/V/P*		Total
Lecture		Tutoriai Practicai		Internal	External	Internal	External	Total
3	1		4	40/16	60/24			100/40

^{*} J: Jury; V: Viva; P: Practical

Sr.	Contents	Hours
1	UNIT I: Introduction to Bioinformatics:-	15
	Bioinformatics and its relation with molecular biology. Examples of related tools	
	(FASTA, BLAST, BLAT, RASMOL), databases (GENBANK, Pubmed, PDB) and	
	software (RASMOL, Ligand Explorer etc.).	
	Protein databases (Primary, Composite, and Secondary), Structure databases of	
	protein (CATH, SCOP, Pfam, Prodom).	
	Data generation and analysis; Generation of large scale molecular biology data.	
	(Through Genome sequencing, Protein sequencing, Gel electrophoresis, NMR	
	Spectroscopy, Mass/Ms-MALDI, X-Ray Diffraction, and microarray). Applications of	
	Bioinformatics.	

2	UNIT II: Sequence analysis:- Scoring matrices: basic concept of a scoring matrix, PAM and BLOSUM series. Sequence-based Database Searches: what are sequence-based database searches, BLAST and FASTA algorithms, various versions of basic BLAST and FASTA. Pairwise and Multiple sequence alignments: basic concepts of sequence alignment, Needleman & Wuncsh, Smith & Waterman algorithms for pairwise alignments, Progressive and hierarchical algorithms for MSA.	15
3	UNIT III: Functional genomics:- Use of pairwise alignments and Multiple sequence alignment for analysis of Nucleic acid and protein sequences and interpretation of results. Multiple sequence Alignment: CLUSTAL W Definition and description of phylogenetic trees and various types of trees, Basic concepts of sequence similarity, identity and homology, Definitions of homologues, orthologues, paralogues, xenologus. Molecular basis of evolution, Method of construction of Phylogenetic trees: Distance based method (UPGMA, NJ), Character Based Method (Maximum Parsimony).	15
4	UNIT IV: Structural biology and Molecular Modelling Structural classification of proteins, Protein structure analysis, structure alignment and comparison, conformational study, importance of 310 helix and loops, biophysical aspects of proteins and nucleic acids, Ramachandran plot. Secondary structure and evaluation: algorithms of Chou Fasman, GOR methods. Tertiary Structure: basic principles and protocols, Methods to study 3D structure. Structure-based drug designing Introduction, Structure-based drug designing approaches: - Target Identification and Validation. Ligand-based drug designing and docking Introduction, Ligand-based drug designing approaches: Lead Designing, ADME property.	15

1	Bioinformatics - Principles and Applications by Ghosh Z and Mallick B (2009). Oxford
	University Press. ISBN-13:978-0-19-569230-3.
2	Bioinformatics: Sequence and Genome Analysis by Mount DW (2004) Spring Harbor Press,
	2 nd Eds.ISBN-13-978-0879697129.
3	Bioinformatics: Methods and Applications by Rastogi SC (2013). PHI Publishing, 4th Eds.
	ISBN-13-978-8120347854.
4	Computational Molecular Biology An Algorithmic Approach by Pevzner PA (2000). Prentice
	Hall, MIT Press, ISBN-9780262528177.
5	Bioinformatics Algorithms: An Active Learning Approach by Phillip Compeau, Pavel Pevzner
	(2018). Active Learning Publishers, ISBN-9780990374633.
6	Molecular Modeling: Principles and Application by Leach AR (2010) 2nd Eds. ISBN 978-1-
	4419-6350-5.
7	Structural Bioinformatics edited by Bourne PE, Weissig H (2003). John Wiley & Sons, Inc.
	ISBN 0-471-20200-2.

Sup	Supplementary learning Material:					
1	https://www.ncbi.nlm.nih.gov/					
2	https://www.embl.org/					
3	https://www.ddbj.nig.ac.jp/index-e.html					
4	https://www.rcsb.org/					
5	https://www.expasy.org/resources/uniprotkb-swiss-prot					

Pedagogy:

Direct Classroom teaching Audiovisual

1 --: ----- ---- /-

Assignments/Quiz

Feedback

Interactive participating methods

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U	J A N E C		С	N: Analyzing; E: Evaluating; C: Creating	
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr.	Course Outcome Statements	%weightage
CO-1	Students will be able to understand the knowledge of various databases	25
	and their uses. Concepts of scoring matrices and sequence alignment for	
	analysis of Nucleic acid and protein sequences.	
CO-2	Students will be aware of the various methods for prediction of gene	25
	structure in Prokaryotes and Eukaryotes, computational RNA Structure	
	analysis and various methods for complete transcript cataloguing and	
	gene discovery.	
CO-3	Students will be able to know about various tools for genomics and	25
	comparative genomics, phylogenetic analysis by various types of trees	
	and methods.	
CO-4	Students will be able to recognize the tools for proteomics, different	25
	algorithms for prediction of secondary & 3D structure of protein and	
	protein folding.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			

Effective from Academic Batch: 2020-21

Programme: M. Sc. (Integrated Biotechnology) Industrial Biotechnology

Semester: X

Course Code: To be Given by University

Course Title: Lab – I (Biosafety, Bioethics & IPR and Bioinformatics)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	sing)			
Locturo	Tutorial	Dragtical	Credits	Theory		J/V/P*		Total
Lecture		Practical		Internal	External	Internal	External	Total
		6	4			40/16	60/24	100/40

^{*} J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Biosafety, Bioethics & IPR

1	Good lab Practices					
2	Lab designs according to biosafety levels					
3	Handling of rDNA in laboratory					
4	Disposal of Biohazardous waste					
5	Patent Filing & Infringement of patents (case study)					
6	Traditional knowledge: case study					

List of Practicals / Tutorials: Bioinformatics

1	Introduction of different database of NCBI,					
2	Protein Sequence Databases (PIR, SwissProt)					
3	Introduction of PIR, SCOP, CATH					
4	Database introduction-Prosite, Pfam/ Prodom					
5	Introduction of Genome browser – UCSC, GenScan					
6	Use of L-ALIGN					
7	Alignment using BLAST					
8	Clustal-W and Phylogenetic Analysis					
9	Visualization by RASMOL & SPDBV					
10	Homology modeling					
11	Docking					
12	Ramchandran Plot					

Refe	Reference Books:						
1	https://rcb.res.in/upload/Biosafety_Guidelines.pdf						
2	https://dbtindia.gov.in/guidelines-biosafety						
3	https://ipindia.gov.in/						
4	Bioinformatics For Beginners: A Laboratory Manual by Department of Computer Science						
	PSGR, Published by Blue Hill Publishers. ISBN: 9788193708828.						
5	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by Andreas D.						
	Baxevanis; Published by A John Wiley & Sons, Inc., Publication. ISBN: 0471383902.						
6	Essential Bioinformatics" by Jin Xiong; Published by Cambridge University Press.ISBN:978-						
	0521600828.						

Pedagogy:

Chart

Hands on training Discussion with students Demonstration Model

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U	Α	N	E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	January 2023			
Last Reviewed on (Month-Year):	February 2023			
Next Review on (Month-Year):	April 2025			